
2. CABLES AND ARCHES 
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2.1 INTRODUCTION 

2.1 Introduction 

• Cables carry applied loads & develop mostly tensile stresses - Loads 
applied through hangers - Cables near the end supporting structures 
experience bending moments and shear forces  

• Arches carry applied loads and develop mainly in-plane compressive 
stresses; three-hinged, two-hinged and fixed arches - Loads applied 
through ribs - Arch sections near the rib supports and and arches, other 
than three-hinged arches, experience bending moments and shear forces 
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2.1 INTRODUCTION 

(Cont’d) 



2.1 INTRODUCTION (Cont’d) 

• In cables, the loads applied through hangers is considered to be 
a uniformly distributed load - in the same manner, the loads 
distributed  to the arches through the ribs are considered to 
be uniformly distributed 

• Cable type structures - Suspension roof, suspension bridges, cable 
cars, guy-lines, transmission lines, etc. 

• Arch type structures - Arches, domes, shells, vaults 

4 



2.2 ANALYSIS OF CABLE 

2.2.1 Assumptions 

• Cable is flexible and in-extensible; hence does not resist any 
bending moment or shear force (this is not always true - e.g., fatigue 
of cables); self weight of cable neglected when external loads act on 
the cable 

• Since only axial tensile forces are carried by the cable, the force in 
the cable is tangential to the cable profile 

• Since it is in-extensible, the length is always constant; as a 
consequence of the cable profile not changing its length and form, it 
is assumed to be a rigid body during analysis 

• Even when a moving load is acting on the cable, the load is 
assumed to be uniformly distributed over the cable (since the cable 
profile is not assumed to change) 
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2.2 ANALYSIS OF CABLE (Cont’d) 

• 2.2.2 Cables subjected to concentrated loads 

• When the weight of the cable is neglected in analysis and is 

subjected to only concentrated loads, the cable takes the form of 
several straight line segments; the shape is called as 
funicular polygon. Consider for instance the cable shown in Figure 
5.1 
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2.2 ANALYSIS OF CABLE (Cont’d) 

• 2.2.2 Cable under concentrated loads (Cont’d) 

• In figure 5.1, the known parameters are L1, L2, L3, P1 & P2 - the 
unknowns are the four support reactions at A and B, the three 
cable tensions (in the three segments) and the two sags (yC and 
yD) - 9 unknowns 

• Eight force equilibrium equations can be written at the four 
nodes and we need to have one more condition to solve the 
problem - This is met by assuming something about the cable, 
either its total length, or one of its sags (say yC or yD) 
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2.2 ANALYSIS OF CABLE (Cont’d) 

• 2.2.2 Cable under concentrated loads (Cont’d) 

• Problem 5.1: Determine the tension in each segment 
of the cable, shown below, and the total length of the 
cable 
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2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Cont’d) 
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 Considering horizontal and vertical equilibrium at

B,
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2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Cont’d) 
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 Considering equilibrium at C,   0&,0 VH FF ;
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 Dividing equation (I) by (II),
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 Substituting for 
)tan( 2

and 
)tan( 3

 in terms of y and solving,

 y = 2.6784 ft

 BA = 8.2988 kips; BC = 4.6714 kips and CD = 8.815 kips;

 Total length of cable = 8.062 + 5.672 + 6.422 = 20.516 ft



2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS 
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2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS (Cont’d) 

12 

 Equation (A) reduces to : ;0)sin()cos(   TT

 ;0)]cos([  T
dx

d
integrating )........(tan)cos( DFtConsT H

 Equation (B) reduces to: ;0)cos()sin( 0  xwTT 

this equation can be rewritten as )....()]sin([ 0 EwT
dx

d


 Equation (C) reduces to ;0)sin()cos(  xTyT   this equation

reduces to ).........().........tan( F
dx

dy


 From equation (E), one gets 
).......()sin( 0 GxwT 

, using the condition that

at x = 0, 
0

 From equation (D) and (G), dividing one by the other (G/D),

one obtains 
dx

dy
Fxw H  /)tan( 0  from Eqn. (F); and integrating further,

.)2/(2

0 BFxwy H   At x = 0, y = 0. This leads to the final form given by

)2/(2

0 HFxwy 



2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS 
(Cont’d) 
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2.4 ADDITIONAL CONSIDERATIONS FOR CABLE SUPPORTED 
STRUCTURES 

• Forces on cable bridges: Wind drag and lift forces - Aero-elastic effects 
should be considered (vortex-induced oscillations, flutter, torsional 
divergence or lateral buckling, galloping and buffeting). 

• Wind tunnel tests: To examine the aerodynamic behavior 

• Precaution to be taken against: Torsional divergence or lateral buckling 
due to twist in bridge; Aero-elastic stability caused by geometry of deck, 
frequencies of vibration and mechanical damping present; Galloping 
due to self-excited oscillations; Buffeting due to unsteady loading 
caused by velocity fluctuations in the wind flow 
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