2. CABLES AND ARCHES

2.1 INTRODUCTION

2.1 Introduction

- <u>Cables</u> carry applied loads & <u>develop mostly tensile stresses</u> Loads applied through hangers - Cables near the end supporting structures experience bending moments and shear forces
- <u>Arches</u> carry applied loads and develop <u>mainly in-plane compressive</u> <u>stresses</u>; three-hinged, two-hinged and fixed arches - Loads applied through ribs - Arch sections near the rib supports and and arches, other than three-hinged arches, experience bending moments and shear forces

Cables

2.1 INTRODUCTION (Cont'd)

FIG. 5.1 (left) Cable supported roof composed of three element: cables, a center tension ring, and an outer compression ring.

 V_{2}

(b)

FIG. 5.2 (right) Vertically loaded cables: (a) cable with an inclined chord. h, the vertical distance between the chord and the cable is called the sag, (b) freebody of a cable segment carrying vertical loads; Although the resultant cable force T varies with the slope of the cable, $\Sigma F_x = 0$ requires that H, the horizontal component of T is constant from section to section.

Fig. 5-8

2.1 INTRODUCTION (Cont'd)

- In cables, the loads applied through hangers is considered to be a uniformly distributed load - in the same manner, the loads distributed to the arches through the ribs are considered to be uniformly distributed
- <u>Cable type structures</u> Suspension roof, suspension bridges, cable cars, guy-lines, transmission lines, etc.
- Arch type structures Arches, domes, shells, vaults

2.2 ANALYSIS OF CABLE

2.2.1 Assumptions

- Cable is <u>flexible and in-extensible</u>; hence does not resist any bending moment or shear force (this is not always true - e.g., fatigue of cables); <u>self weight of cable neglected</u> when external loads act on the cable
- Since only axial tensile forces are carried by the cable, the <u>force in</u> <u>the cable is tangential to the cable profile</u>
- <u>Since it is in-extensible, the length is always constant</u>; as a consequence of the cable profile not changing its length and form, it is <u>assumed to be a rigid body during analysis</u>
- Even when a moving load is acting on the cable, the load is assumed to be uniformly distributed over the cable (since the cable profile is not assumed to change)

2.2 ANALYSIS OF CABLE (Cont'd)

<u>2.2.2 Cables subjected to concentrated loads</u>

 When the weight of the cable is neglected in analysis and is subjected to only concentrated loads, the <u>cable takes the form of</u> <u>several straight line segments; the shape is called as</u> <u>funicular polygon.</u> Consider for instance the cable shown in Figure 5.1

2.2 ANALYSIS OF CABLE (Cont'd)

- 2.2.2 Cable under concentrated loads (Cont'd)
- In figure 5.1, the known parameters are L₁, L₂, L₃, P₁ & P₂ the unknowns are the four support reactions at A and B, the three cable tensions (in the three segments) and the two sags (y_c and y_p) 9 unknowns
- Eight force equilibrium equations can be written at the four nodes and we need to have one more condition to solve the problem - <u>This is met</u> by assuming something about the cable, either its total length, or one of its sags (say y_c or y_D)

2.2 ANALYSIS OF CABLE (Cont'd)

- 2.2.2 Cable under concentrated loads (Cont'd)
- Problem 5.1: Determine the tension in each segment of the cable, shown below, and the total length of the cable

8

2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Cont'd)

•
$$AB = \sqrt{(7^2 + 4^2)} = 8.062 \, ft; \quad BC = \sqrt{(y^2 + 5^2)}$$

$$\cos(\theta_1) = 4/(8.062) = 0.4962; \quad \sin(\theta_1) = 7/(8.062) = 0.8683$$

•
$$\cos(\theta_2) = 5/\sqrt{(y^2 + 5^2)}; \quad \sin(\theta_2) = \frac{y}{\sqrt{(y^2 + 5^2)}};$$

•
$$CD = \sqrt{[(3+y)^2 + 3^2]}; \quad \cos(\theta_3) = \frac{3}{\sqrt{[(3+y)^2 + 3^2]}}; \quad \sin(\theta_3)$$

$$= (3+y)/\sqrt{[(3+y)^2+3^2]}; \quad \tan(\theta_3) = \frac{(3+y)}{3}$$

Considering horizontal and vertical equilibrium at B,

$$\sum F_H = 0; \quad \sum F_V = 0$$

$$BA\cos(\theta_1) - BC\cos(\theta_2) = 0.0 \quad \therefore BC = BA \times (0.4962) / \cos(\theta_2);$$

and $BA\sin(\theta_1) - 5 - BC\sin(\theta_2) = 0$

: $BA = 5/[0.8683 - 0.4962 \tan(\theta_2)]$(I)

2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Cont'd)

• Considering equilibrium at C, $\sum F_H = 0$, & $\sum F_V = 0$,

• $BC\cos(\theta_2) - CD\cos(\theta_3) = 0;$ $CD = BA \times (0.4962)/(\cos(\theta_3));$

 $\bullet BC\sin(\theta_2) + CD\sin(\theta_3) - 10 = 0$

 $\therefore BA = \frac{10}{(0.4962 \tan(\theta_2) + 0.4962 \tan(\theta_3))....(II)}$

• Dividing equation (I) by (II),

 $[0.8683 - 0.4962 \tan(\theta_2)] / [0.4962 \times (\tan(\theta_2) + \tan(\theta_3)] = 1/2$

- Substituting for $\tan(\theta_2)$ and $\tan(\theta_3)$ in terms of y and solving,
- y = 2.6784 ft
- BA = 8.2988 kips; BC = 4.6714 kips and CD = 8.815 kips;
- Total length of cable = 8.062 + 5.672 + 6.422 = 20.516 ft

 $\begin{bmatrix} 10 \end{bmatrix}$

2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS

• $\sum F_x = 0; \quad \therefore -T\cos(\theta) + (T + \Delta T)\cos(\theta + \Delta \theta) = 0.....(A)$ • $\sum F_y = 0; \quad \therefore -T\sin(\theta) - w_0\Delta X + (T + \Delta T)\sin(\theta + \Delta \theta) = 0.....(B)$ $\sum M_o = 0; \quad \therefore (w_0\Delta x)(\Delta x/2) - T\cos(\theta)\Delta y + T\sin(\theta)\Delta x = 0....(C)$

2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS (Cont'd)

- Equation (A) reduces to : $\Delta T \cos(\theta) T \sin(\theta) \Delta \theta = 0$;
- $\rightarrow \frac{d}{dx}[T\cos(\theta)] = 0$; integrating $T\cos(\theta) = Cons \tan t = F_H....(D)$
- Equation (B) reduces to: $\Delta T \sin(\theta) + T \cos(\theta) \Delta \theta w_0 \Delta x = 0;$ this equation can be rewritten as $\frac{d}{dr}[T\sin(\theta)] = w_0....(E)$
- Equation (C) reduces to $-T\cos(\theta)\Delta y + T\sin(\theta)\Delta x = 0$; this equation reduces to $\frac{dy}{dx} = \tan(\theta)$(F) From equation (E), one gets $T\sin(\theta) = w_0 x$(G), using the condition that
- at x = 0,
- From equation (D) and (G), dividing one by the other (G/D), one obtains $\tan(\theta) = w_0 x / F_H = \frac{dy}{dx}$ from Eqn. (F); and integrating further, $y = w_0 x^2 / (2F_H) + B$. At x = 0, y = 0. This leads to the final form given by $y = w_0 x^2 / (2F_H)$

2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS (Cont'd)

- $y = w_0 x^2 / (2F_H)$ This is the equation for a parabola.
- Using the condition, at x = L, y = h, one obtains that $F_H = w_0 L^2 / (2h)$; hence $y = h(x/L)^2$
- Considering the point B, $T_{mas} = \sqrt{[F_H^2 + (w_0 L)^2]}$ = $\sqrt{[(w_0 L/(2h))^2 + (w_0 L)^2]} = (w_0 L)\sqrt{[(L/(2h)^2 + 1]]}$

2.4 ADDITIONAL CONSIDERATIONS FOR CABLE SUPPORTED STRUCTURES

- Forces on cable bridges: Wind drag and lift forces Aero-elastic effects should be considered (vortex-induced oscillations, flutter, torsional divergence or lateral buckling, galloping and buffeting).
- Wind tunnel tests: To examine the aerodynamic behavior
- Precaution to be taken against: Torsional divergence or lateral buckling due to twist in bridge; Aero-elastic stability caused by geometry of deck, frequencies of vibration and mechanical damping present; Galloping due to self-excited oscillations; Buffeting due to unsteady loading caused by velocity fluctuations in the wind flow