2. CABLES AND ARCHES




2.1 INTRODUCTION

2.1 Introduction

Cables carry applied loads & develop mostly tensile stresses - Loads
applied through hangers - Cables near the end supporting structures
experience bending moments and shear forces

Arches carry applied loads and develop mainly in-plane compressive
stresses; three-hinged, two-hinged and fixed arches - Loads applied
through ribs - Arch sections near the rib supports and and arches, other
than three-hinged arches, experience bending moments and shear forces
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2.1 INTRODUCTION
(Cont’d)

cable compression ring

FIG. 5.1 (left) Cable supported roof composed of three
element: cables, a center tension ring, and an outer
compression ring.
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FIG. 5.2 [right) Vertically loaded cables: (a) cable with an inclined chord. f, 1 4,
h, the vertical distance between the chord and the cable is called the sag, H L
{b) freebody of a cable segment carrving vertical loads; Although the T ¥ ‘ l W
resultant cable force T varies with the siope of the cable, XF, = 0 requires ? v,
that H. the horizontal component of T is constant from section to section. : [45]
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2.1 INTRODUCTION (Contd)

* In cables, the loads applied through hangers is considered to be
a uniformly distributed load - in the same manner, the loads
distributed to the arches through the ribs are considered to
be uniformly distributed

* Cable type structures - Suspension roof, suspension bridges, cable
cars, guy-lines, transmission lines, etc.

* Arch type structures - Arches, domes, shells, vaults




2.2 ANALYSIS OF CABLE

2.2.1 Assumptions

Cable is flexible and in-extensible; hence does not resist any
bending moment or shear force (this is not always true - e.g., fatigue
of cables); self weight of cable neglected when external loads act on
the cable

Since only axial tensile forces are carried by the cable, the force in
the cable is tangential to the cable profile

Since it is in-extensible, the length is always constant; as a
consequence of the cable profile not changing its length and form, it
is assumed to be a rigid body during analysis

Even when a moving load is acting on the cable, the load is
assumed to be uniformly distributed over the cable (since the cable
profile is not assumed to change)




2.2 ANALYSIS OF CABLE (Contd)

- 2.2.2 Cables subjected to concentrated loads

* When the weight of the cable is neglected in analysis and is
subjected to only concentrated loads, the cable takes the form of
several straight line segments; the shape is called as

funicular polygon. Consider for instance the cable shown in Figure
5.1

Figure 5.1




2.2 ANALYSIS OF CABLE (Contd)

« 2.2.2 Cable under concentrated loads (Cont’d)

* In figure 5.1, the known parameters are L,, L,, L;, P, & P, - the
unknowns are the four support reactions at A and B, the three
cable tensions (in the three segments) and the two sags (y. and
¥p) - 9 unknowns )

* Eight force equilibrium equations can be written at the four
nodes and we need to have one more condition to solve the
problem - This is met by assuming something about the cable,
either its total length, or one of its sags (say y. or yp)




2.2 ANALYSIS OF CABLE (Contd)

« 2.2.2 Cable under concentrated loads (Cont’d)

* Problem 5.1: Determine the tension in each segment
of the cable, shown below, and the total length of the
cable




2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Contd)

® p5- /(77147 =8062ft; BC=+(3>+5%)

® .56, )=4/8.062) = 0.4962; sin(8,) = 7/(8.062) = 0.8683

c08(6) = 5/(* +5%); sin(@) = T pmo

@® cD-[G+1) +3°]; cos@®,)= 7\/[(3+ SEFERE sin(@,)

=B+ 1)/JIG+y) +3°]; tan(@,) = (3+y%

® Considering horizontal and vertical equilibrium at

® BAcos(6,) —BCcos(6,)=0.0 ..BC = BA4x(0.4962)/cos(6,);

and BA4sin(6,)-5- BCsin(0,) =0

-. BA =5/[0.8683 —0.4962 tan(€,)]..ceeeeeeeeeeeennn... )




2.2 ANALYSIS OF CABLE - FOR CONCENTRATED LOADS (Contd)

. Considering equilibrium at C,> F, =0, & Y F, =0,
@® BCcos(0,)—CDcos(8,)=0; CD = BAx(0.4962)/(cos(8,));
® 5Csin(0,)+CDsin(6,)~10=0 ;

“ BA =10/(0.4962 tan(0,) + 0.4962 tan(6, ))................. (1)

e Dividing equation (I) by (II),
@ [0-8683-0.4962tan(6,)]/[0.4962  (tan(®,) + tan(6;)] = 1/2

tan(6, tan(@,) . ,
e Substituting for () and @) in terms of y and solving,

o y=2.6784{t
e BA =8.2988 kips; BC=4.6714 kips and CD = 8.815 kips;
e Total length of cable = 8.062 + 5.672 + 6.422 = 20.516 ft




2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS

a8

{a)

® N r =0, . -Tcos(d)+(T+AT)cos(6 +A) =0......(A)

® > r =0, -.-Tsin(6)—w,AX +(T +AT)sin(f + A0) = 0.......(B)
ZMO =0; .. (Ww,Ax)(Ax/2)—T cos(@)Ay + T sin(€)Ax =0......(C)



2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS (Contd)

e Equation (A) reduces to : AT cos(6@)—T sm(0)A8 = 0;

N a’i[T cos(8)] = 0; integrating 7 cos(f)=Cons tant =F,, ........ (D)
X
e Equation (B) reduces to: AT sin(0) + T cos(0)AO — w,Ax = 0;
this equation can be rewritten as di[T sin(f)] =w,....(E)
X

e Equation (C) reduces to — 7 cos(@)Ay + T sin(#)Ax = 0; this equation

reduces to % =tan(@).................. (F)
X Tsin(0) = wyx.....(G) . -
e From equation (E), one gets , using the condition that
atx =0,

e From equation (D) and (G), dividing one by the other (G/D),

one obtains tan(d) =w,x/F, = % from Eqn. (F); and integrating further,
X

y=w,x>/(2F, )+ B. Atx =0,y = 0. This leads to the final form given by
v =wex® (2F,)




2.3 CABLES SUBJECTED TO UNIFORMLY DISTRIBUTED LOADS
(Cont'd)

o y=wyux’/(2F,) .....This is the equation for a parabola.
e Using the condition, at x = L, y = h, one obtains that F, = w,L* /(2h);
hence ¥ =h(x/L)’
e Considering the point B, Ty = JIF; +(w,L)?
= JTOw L 120)* + (w,L)*] = (w, DL A21)* +1]




2.4 ADDITIONAL CONSIDERATIONS FOR CABLE SUPPORTED
STRUCTURES

* Forces on cable bridges: Wind drag and lift forces - Aero-elastic effects
should be considered (vortex-induced oscillations, flutter, torsional
divergence or lateral buckling, galloping and buffeting).

* Wind tunnel tests: To examine the aerodynamic behavior

* Precaution to be taken against: Torsional divergence or lateral buckling
due to twist in bridge; Aero-elastic stability caused by geometry of deck,
frequencies of vibration and mechanical damping present; Galloping
due to self-excited oscillations; Buffeting due to unsteady loading
caused by velocity fluctuations in the wind flow




