Cables and Arches

Cables: Assumptions

- Cable is perfectly flexible & inextensible
- No resistance to shear/bending: same as truss bar
- The force acting the cable is alw the cable <u>stanistic close its long</u>

Only axial force!

Example 5.1 Under Concentrated Forces

- Determine the tension in each segment of the cable. Also, what is the dimension *h*?
- 4 unknown external reactions (Ax. Av. Dx and Dv)
- 3 unknown cable tensions
- 1 geometrical unknown h
- 8 unknowns
- 8 equilibrium conditions

Solution

 $\Sigma M_A = 0$ $T_{CD}(3/5)(2m) + T_{CD}(4/5)(5.5m) - 3kN(2m) - 8kN(4m) = 0$ $T_{CD} = 6.79 kN$ (a) Joint equilibriu m at C $\mathbf{A}_{\mathbf{x}}$ T_{CD} $6.79kN(3/5) - T_{BC}\cos\theta_{BC} = 0$ 2 m $6.79kN(4/5) - 8kN + T_{BC}\sin\theta_{BC} = 0$ 6.79 kN $T_{\mathcal{BC}}$ $\theta_{\underline{BA}}$ $\theta_{BC} = 32.3^{\circ}$ and $T_{BC} = 4.82kN$ $\theta_{\rm BC}$ B8 kN Similarly, Joint equilibriu m at B 3 kN $\theta_{BA} = 53.8^{\circ}$ and $T_{BA} = 6.90 kN$ 8 kN T_{BA} -2 m– -2 m *Finally*, $h = (2m) \tan 53.8^{\circ} = 2.74m$ 32.3° 3 kN 4.82 kN

 \Box Consider this cable under distributed vertical load w_{o} The cable force is not a constant.

 $w_{a}(\Delta x)(\Delta x/2) - T\cos\theta\Delta y + T\sin\theta\Delta x = 0$

eqn 1

eqn 3

eqn 2

• From Eqn 1 and let $T = F_H$ at x = 0:

$$T\cos\theta = cons \tan t = F_H \ \text{eqn } 4$$

□ Integrating Eqn 2 realizing that $Tsin\theta = 0$ at x = 0:

$$T\sin\theta = w_o x \quad \text{eqn 5}$$

□ Eqn 5/Eqn 4:

$$\tan \theta = \frac{dy}{dx} = \frac{w_o x}{F_H} \quad \text{eqn 6}$$

$$F_{H}$$

Λ

$$\tan \theta = \frac{dy}{dx} = \frac{w_o x}{F_H} \quad \text{eqn 6}$$

\square Performing an integration with y = 0 at x = 0 yields

$$y = \frac{w_o}{2F_H} x^2 \quad \text{eqn 7} \quad y = h \text{ at } x = L$$

$$F_H = \frac{w_o L^2}{2h} \quad \text{eqn 8}$$
Cable profile:
$$y = \frac{h}{L^2} x^2 \quad \text{eqn 9}$$

Where and what is the max tension

 $T\cos\theta = F_H \ \text{eqn 4}$

 $T\sin\theta = w_o x \quad \text{eqn 5}$

$$T = \sqrt{F_H^2 + (w_o x)^2}$$

□ T is max when *x*=*L*

$$T_{max} = \sqrt{F_H^2 + (w_o L)^2}$$
 eqn 10

$$F_{H} = \frac{w_{o}L^{2}}{2h} \quad \text{eqn 8}$$

$$T_{max} = w_o L \sqrt{1 + (L/2h)^2} \quad \text{eqn 11}$$

 $T\cos\theta = F_H$ \mathcal{Y} $T\sin\theta = w_o x$ $\tan\theta = \frac{dy}{dx} = \frac{w_o x}{F_H}$ W_{0} $F_H = \frac{w_o L^2}{2h}$ F_H $y = \frac{h}{I^2} x^2$ (a) $T_{\rm max} = w_o L \sqrt{1 + (L/2h)^2}$

- Neglect the cable weight which is uniform along the length
- A cable subjected to its own weight will take the form of a catenarya curve
- This curve ~ parabolic for small sag-to-span range

Wiki catenary

Hangers are close and uniformly spaced

If forces in the hangers are known then the structure can be analyzed 1 degree of indeterminacy

Determinate structure

hinge

The cable supports a girder which weighs 12kN/m. Determine the tension in the cable at points A, B & C.

Solution

The origin of the coordinate axes is established at point B, the lowest point on the cable where slope is zero,

$$y = \frac{w_o}{2F_H} x^2 = \frac{12\text{kN/m}}{2F_H} x^2 = \frac{6}{F_H} x^2 \quad (1) = 0.0389x^2$$

Assuming point C is located x' from B:

$$6 = \frac{6}{F_H} x'^2 \Longrightarrow F_H = 1.0 x'^2 \quad (2) = 154.4 kN$$

From B to A:

$$12 = \frac{6}{F_H} [-(30 - x')]^2$$

$$12 = \frac{6}{1.0x'^2} [-(30 - x')]^2$$

$$x'^2 + 60x' - 900 = 0 \Rightarrow x' = 12.43m$$

(a)

Solution

$$\tan \theta_C = \frac{dy}{dx}\Big|_{x=12.43} = 0.966$$
$$\theta_C = 44.0^o$$
$$T_C = \frac{F_H}{\cos \theta_C} = \frac{154.4}{\cos 44.0^o} = 214.6kN$$

$$tan \theta_A = \frac{dy}{dx} \Big|_{x=-17.57} = -1.366$$
$$\theta_A = -53.79^o$$
$$T_A = \frac{F_H}{\cos \theta_A} = 261.4kN$$

Determine the max tension in the cable IH

Cable and Arch

What if the load direction reverses?

Arches

- An arch acts as inverted cable so it receives compression
- An arch must also resist bendi

Three-Hinged Arch

Problem 5-30

Determine reactions at A and C and the cable

- The three-hinged arch bridge has a parabolic shape and supports the uniform load. Assume the load is uniformly transmitted to the arch ribs.
- Show that the parabolic arch is subjected *only to axial compression* at an intermediate point such as point *D*.

