Cables and Arches

Cables: Assumptions

\square Cable is perfectly flexible \& inextensible
\square No resistance to shear/bending: same as truss bar
\square The force acting the cable is aln the cable

Only axial force!

Example 5.1 Under Concentrated Forces

Determine the tension in each segment of the cable. Also, what is the dimension h ?
4 unknown external reactions (Ax. Av. Dx and Dv)
3 unknown cable tensions
1 geometrical unknown h 8 unknowns

8 equilibrium conditions

Solution

$$
\begin{aligned}
& \Sigma M_{A}=0 \\
& T_{C D}(3 / 5)(2 m)+T_{C D}(4 / 5)(5.5 m)-3 k N(2 m)-8 k N(4 m)=0 \\
& T_{C D}=6.79 k N
\end{aligned}
$$

Joint equilibriu m at C
6.79kN(3/5) $-T_{B C} \cos \theta_{B C}=0$
$6.79 k N(4 / 5)-8 k N+T_{B C} \sin \theta_{B C}=0$ $\theta_{B C}=32.3^{\circ}$ and $T_{B C}=4.82 \mathrm{kN}$

Similarly, Joint equilibriu m at B $\theta_{B A}=53.8^{\circ}$ and $T_{B A}=6.90 \mathrm{kN}$

Finally, $h=(2 m) \boldsymbol{\operatorname { t a n }} 53.8^{\circ}=2.74 m$
-

Cable subjected to a uniform distributed load

\square Consider this cable under distributed vertical load w_{o} The cable force is not a constant.

Cable subjected to a uniform distributed load

$$
\begin{aligned}
& \frac{d(T \cos \theta)}{d x}=0 \quad \text { eqn } 1 \\
& \frac{d(T \sin \theta)}{d x}=w_{o} \quad \text { eqn } 2 \\
& \frac{d y}{d x}=\tan \theta \quad \text { eqn } 3
\end{aligned}
$$

From Eqn 1 and let $T=F_{H}$ at $x=0$:

$$
T \cos \theta=\operatorname{cons} \tan t=F_{H} \text { eqn } 4
$$

Integrating Eqn 2 realizing that $T \sin \theta=0$ at $x=0$:

$$
T \sin \theta=w_{o} x \text { eqn } 5
$$

Eqn 5/Eqn 4:

$$
\tan \theta=\frac{d y}{d x}=\frac{w_{o} x}{F_{H}} \quad \text { eqn } 6
$$

Cable subjected to a uniform distributed load

$$
\tan \theta=\frac{d y}{d x}=\frac{w_{o} x}{F_{H}} \quad \text { eqn } 6
$$

Performing an integration with $\mathrm{y}=0$ at $\mathrm{x}=0$ yields

$$
y=\frac{w_{o}}{2 F_{H}} x^{2} \quad \text { eqn } 7 \xrightarrow{\mathrm{y}=\mathrm{h} \text { at } \mathrm{x}=\mathrm{L}} \quad F_{H}=\frac{w_{o} L^{2}}{2 h} \quad \text { eqn } 8
$$

Cable profile: parabola

$$
\longrightarrow y=\frac{h}{L^{2}} x^{2} \quad \text { eqn } 9
$$

Cable subjected to a uniform distributed load

\square Where and what is the max tensio

$$
T \cos \theta=F_{H} \text { eqn } 4
$$

$$
T \sin \theta=w_{o} x \text { eqn } 5
$$

$$
T=\sqrt{F_{H}^{2}+\left(w_{o} x\right)^{2}}
$$

T is max when $x=L$

$$
\Gamma_{m a x}=\sqrt{H_{H}^{2}+\left(w_{0}\right)^{2}} \text { eqn } 0
$$

$$
F_{H}=\frac{w_{o} L^{2}}{2 h} \quad \text { eqn } 8
$$

$$
T_{\max }=w_{o} L \sqrt{1+(L / 2 h)^{2}} \quad \text { eqn } 11
$$

Cable subjected to a uniform distributed load

$$
\begin{aligned}
& T \cos \theta=F_{H} \\
& T \sin \theta=w_{o} x \\
& \tan \theta=\frac{d y}{d x}=\frac{w_{o} x}{F_{H}} \\
& F_{H}=\frac{w_{o} L^{2}}{2 h} \\
& y=\frac{h}{L^{2}} x^{2}
\end{aligned}
$$

$$
T_{\max }=w_{o} L \sqrt{1+(L / 2 h)^{2}}
$$

Cable subjected to a uniform distributed load

Neglect the cable weight which is uniform along the length A cable subjected to its own weight will take the form of a catenaryacunve
This curve ~ parabolic for small sag-to-span ri
Hangers are close and
Wiki catenary uniformly spaced

If forces in the hangers are known then the structure can be analyzed 1 degree of indeterminacy

Determinate structure

Example 5.2

The cable supports a girder which weighs $12 \mathrm{kN} / \mathrm{m}$. Determine the tension in the cable at points $\mathrm{A}, \mathrm{B} \& \mathrm{C}$.

Solution

The origin of the coordinate axes is established at point B, the lowest point on the cable where slope is zero,

$$
y=\frac{w_{o}}{2 F_{H}} x^{2}=\frac{12 \mathrm{kN} / \mathrm{m}}{2 F_{H}} x^{2}=\frac{6}{F_{H}} x^{2} \quad(1)=0.0389 x^{2}
$$

Assuming point C is located x^{\prime} from B :

$$
6=\frac{6}{F_{H}} x^{\prime 2} \Rightarrow F_{H}=1.0 x^{\prime 2} \quad(2)=154.4 \mathrm{kN}
$$

From B to A:

$$
\begin{aligned}
& 12=\frac{6}{F_{H}}\left[-\left(30-x^{\prime}\right)\right]^{2} \\
& 12=\frac{6}{1.0 x^{\prime 2}}\left[-\left(30-x^{\prime}\right)\right]^{2} \\
& x^{\prime 2}+60 x^{\prime}-900=0 \Rightarrow x^{\prime}=12.43 \mathrm{~m}
\end{aligned}
$$

Solution

$$
y=0.0389 x^{2}
$$

$$
\begin{aligned}
& \tan \theta_{A}=\left.\frac{d y}{d x}\right|_{x=-17.57}=-1.366 \\
& \theta_{A}=-53.79^{\circ} \\
& T_{A}=\frac{F_{H}}{\cos \theta_{A}}=261.4 \mathrm{kN}
\end{aligned}
$$

Example 5.3

\square Determine the max tension in the cable IH

Assume the cable is parabolic (under uniformly distributed load)

Example 5.3

Cable and Arch

What if the load direction reverses?

Arches

An arch acts as inverted cable so it receives compression

An arch must also resist bendi d

Arches

Types of arches

fixed arch
(a)

(b)

Three-Hinged Arch

(c)

Problem 5-30

Determine reactions at A and C and the cable

force

3 global Eqs

Example 5.4

The three-hinged arch bridge has a parabolic shape and supports the uniform load. Assume the load is uniformly transmitted to the arch ribs.
Show that the parabolic arch is subjected only to axial compression at an intermediate point such as point D.

Solution

$$
\begin{aligned}
& \tan \theta_{D}=\frac{d y}{d x}=\left.\frac{-20}{(20)^{2}} x\right|_{x=10 m}=-0.5 \\
& \theta_{D}=-26.6^{\mathrm{o}}
\end{aligned}
$$

$$
\begin{aligned}
& N_{D}=178.9 \mathrm{kN} \\
& V_{D}=0 \\
& M_{D}=0
\end{aligned}
$$

