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Cables: Assumptions 

 Cable is perfectly flexible & inextensible 

 No resistance to shear/bending: same as 

truss bar 

 The force acting the cable is always tangent to 

the cable at points along its length 

Only axial force! 



Example 5.1 Under Concentrated Forces 

Determine the tension in each segment of the cable. Also, 

what is the dimension h? 

4 unknown external reactions (Ax, Ay, Dx and Dy) 

3 unknown cable tensions 

1 geometrical unknown h 

8 unknowns 

8 equilibrium conditions 
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Cable subjected to a uniform distributed load 

 Consider this cable under distributed vertical load wo 

 The cable force is not a constant. 
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Cable subjected to a uniform distributed load 

 

 

 
 From Eqn 1 and let T = FH at x = 0: 

 

 

 Integrating Eqn 2 realizing that Tsin = 0 at x = 0: 

 

 

 Eqn 5/Eqn 4:  
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Cable subjected to a uniform distributed load 

 

 

 

 

 

 Performing an integration with y = 0 at x = 0 yields  
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Cable subjected to a uniform distributed load 

 Where and what is the max tension? 

 

 

 

 T is max when x=L 
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Cable subjected to a uniform distributed 

load 

FH 
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Cable subjected to a uniform distributed load 

 Neglect the cable weight which is uniform along the length 

 A cable subjected to its own weight will take the form of a 

catenary curve  

 This curve ~ parabolic for small sag-to-span ratio 











a

x
coshay

Hangers are close and  

uniformly spaced 

If forces in the hangers are known  

then the structure can be analyzed 

1 degree of indeterminacy 

Determinate structure 
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Example 5.2 

The cable supports a girder which weighs 12kN/m. Determine the 

tension in the cable at points A, B & C. 

12kN/m 



Solution 

The origin of the coordinate axes is established at point B, the 
lowest point on the cable where slope is zero,  

 

 

Assuming point C is located x’ from B: 

 

 

From B to A: 
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Solution 
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Example 5.3 

 Determine the max tension in the cable IH 
Assume the cable is parabolic 

(under uniformly distributed load) 
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Example 5.3 
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Cable and Arch 

flip 

What if the load direction reverses? 

FH 

FH 



Arches 

 An arch acts as inverted cable so it receives 

compression 

 An arch must also resist bending and shear 

depending upon how it is loaded & shaped 



Arches 

 Types of arches 

indeterminate 

indeterminate 

indeterminate 

determinate 



Three-Hinged Arch 

Ax 

Ay 

By 

Bx 



Problem 5-30 

Determine reactions at A and C and the cable 

force 

3 global Eqs 

1 hinge condition 
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Example 5.4 

The three-hinged arch bridge has a parabolic shape and supports 

the uniform load. Assume the load is uniformly transmitted to the 

arch ribs. 

Show that the parabolic arch is subjected only to axial 

compression at an intermediate point such as point D.  



Solution 
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