3. INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES

3. INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES - AN OVERVIEW

- Introduction What is an influence line?
- Influence lines for beams
- Qualitative influence lines Muller-Breslau Principle
- Influence lines for floor girders
- Influence lines for trusses
- Live loads for bridges
- Maximum influence at a point due to a series of concentrated loads
- Absolute maximum shear and moment

3.1 INTRODUCTION TO INFLUENCE LINES

• Influence lines describe the variation of an analysis variable (reaction, shear force, bending moment, twisting moment, deflection, etc.) at a point (say at C in Figure 6.1) ...



- Why do we need the influence lines? For instance, when loads pass over a structure, say a bridge, one needs to know when the maximum values of shear/reaction/bending-moment will occur at a point so that the section may be designed
- Notations:

. . .

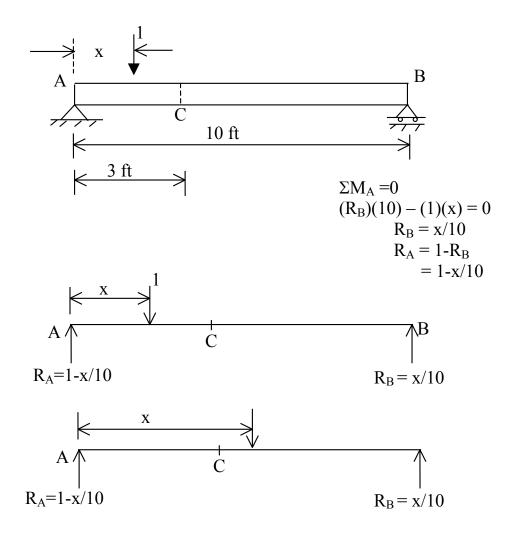
- Normal Forces +ve forces cause +ve displacements in +ve directions
- <u>Shear Forces</u> +ve shear forces cause clockwise rotation & ve shear force causes anti-clockwise rotation
- <u>Bending Moments:</u> +ve bending moments cause "cup holding water" deformed shape

3.2 INFLUENCE LINES FOR BEAMS

- **Procedure:**
 - (1) <u>Allow a unit load</u> (either 1b, 1N, 1kip, or 1 tonne) <u>to move over beam</u> <u>from left to right</u>
 - (2) <u>Find the values</u> of shear force or bending moment, <u>at the point under</u> <u>consideration</u>, as the unit load moves over the beam from left to right
 - (3) <u>Plot the values</u> of the shear force or bending moment, <u>over the length of</u> <u>the beam, computed for the point under consideration</u>

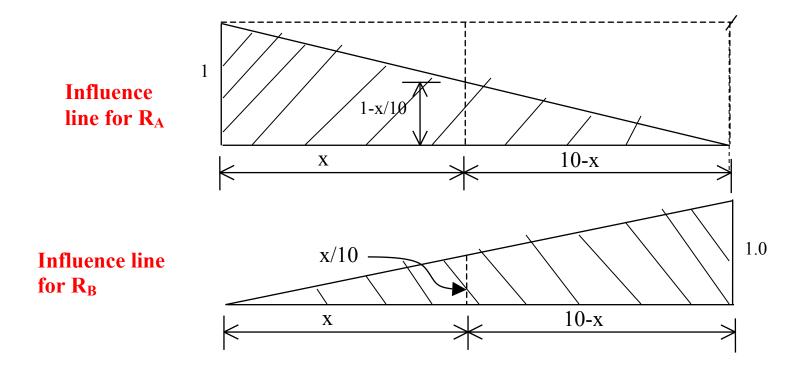
3.3 MOVING CONCENTRATED LOAD

3.3.1 Variation of Reactions RA and RB as functions of load position



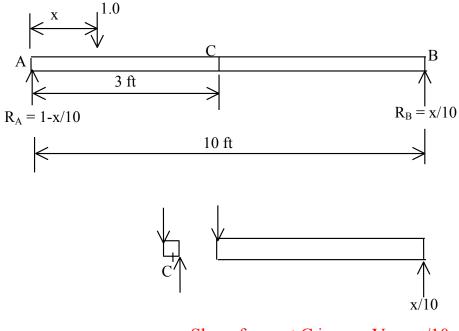
5

<u>R</u>_A occurs only at A; <u>R</u>_B occurs only at B</u>



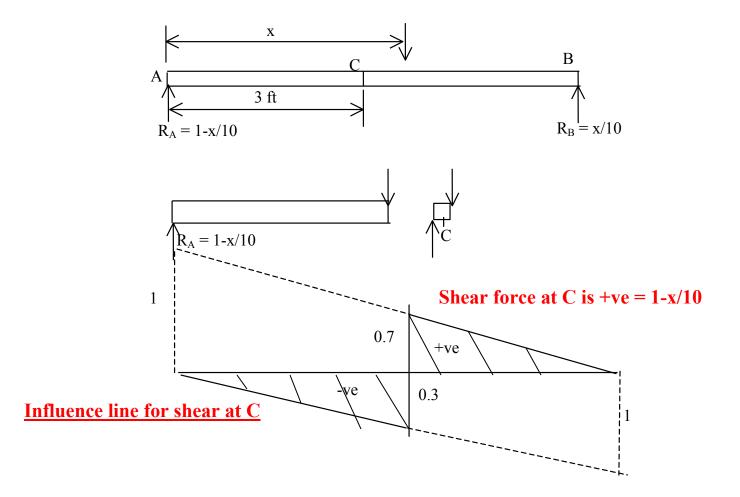
3.3.2 Variation of Shear Force at C as a function of load position

0 < x < 3 ft (unit load to the left of C)



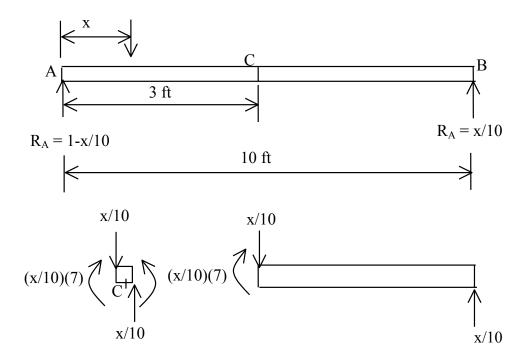
Shear force at C is –ve, $V_C = -x/10$

<u>3 < x < 10 ft (unit load to the right of C)</u>



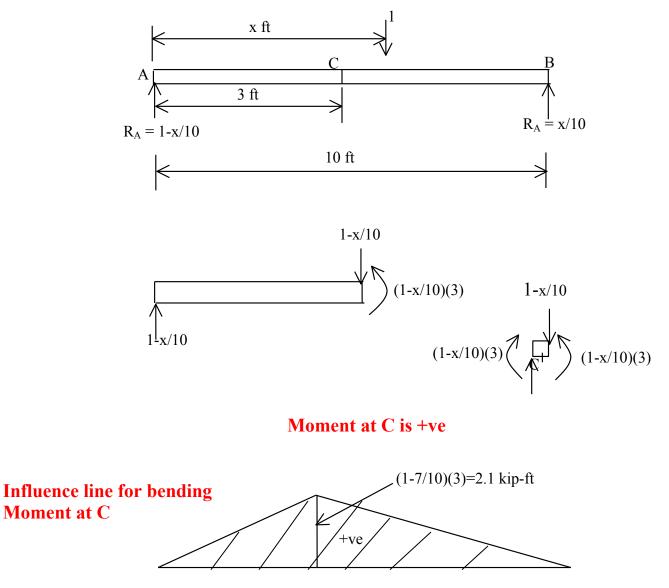
3.3.3 Variation of Bending Moment at C as a function of load position

0 < x < 3.0 ft (Unit load to the left of C)



Bending moment is +ve at C

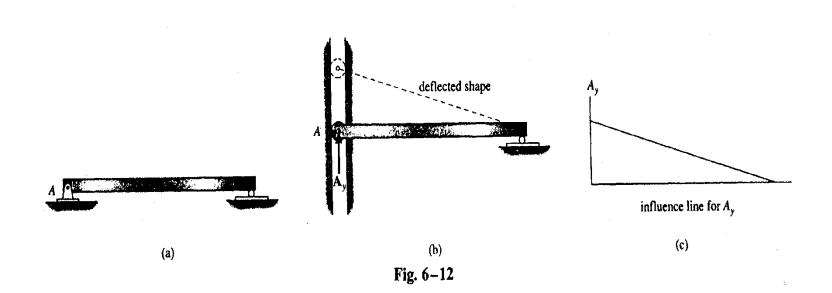
<u>3 < x < 10 ft (Unit load to the right of C)</u>



3.4 QUALITATIVE INFLUENCED LINES - MULLER-BRESLAU'S PRINCIPLE

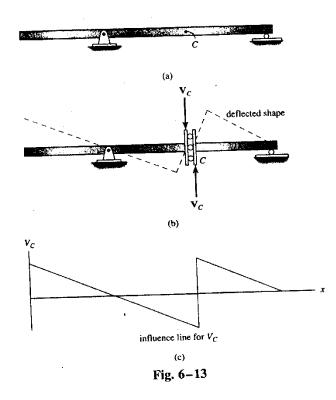
- The principle **gives only a procedure** to determine of the influence line of a parameter for a determinate or an indeterminate structure
- But <u>using the basic understanding of the influence lines</u>, the <u>magnitudes</u> of the influence lines also <u>can be computed</u>
- In order to draw the shape of the influence lines properly, the <u>capacity of the</u> <u>beam to resist the parameter investigated</u> (reaction, bending moment, shear force, etc.), <u>at that point, must be removed</u>
- The principle states that: <u>The influence line for a parameter</u> (say, reaction, shear or bending moment), at a point, <u>is to the same scale as the deflected shape of the beam</u>, when the beam is acted upon by that parameter.
 - The <u>capacity of the beam to resist that parameter</u>, at that point, <u>must be</u> <u>removed</u>.
 - Then allow the beam to deflect under that parameter
 - Positive <u>directions of the forces are the same</u> as before

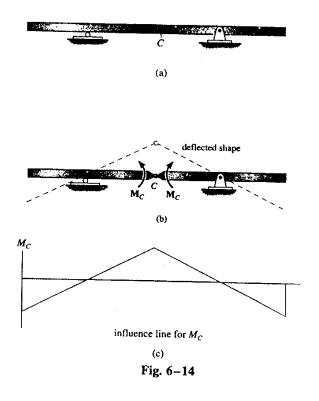
3.5 PROBLEMS - 3.5.1 Influence Line for a Determinate Beam by Muller-Breslau's Method



Influence line for Reaction at A

3.5.2 Influence Lines for a Determinate Beam by Muller-Breslau's Method

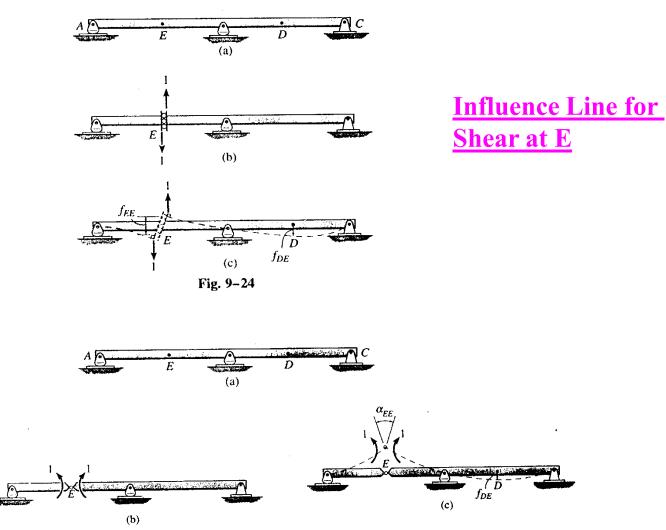




Influence Line for Shear at C

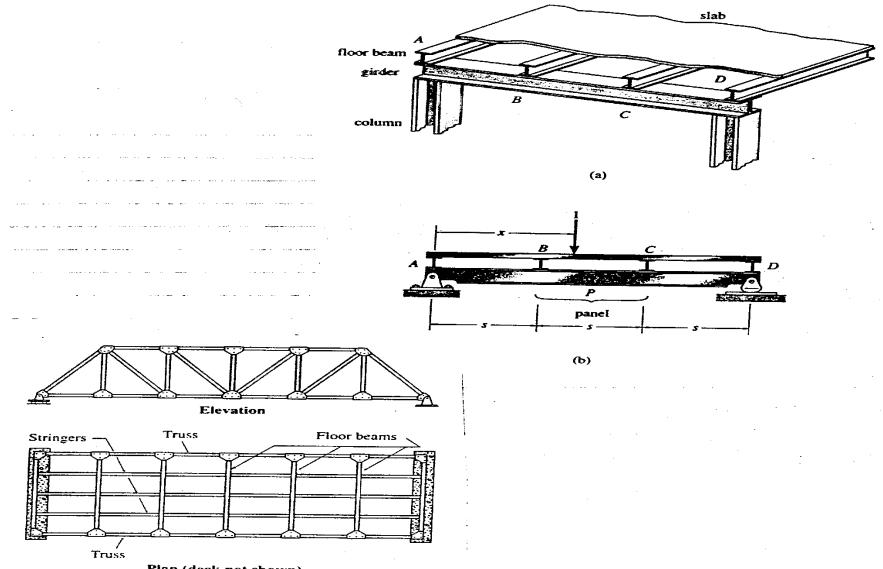
Influence Line for Bending Moment at C

3.5.3 Influence Lines for an Indeterminate Beam by Muller-Breslau's Method

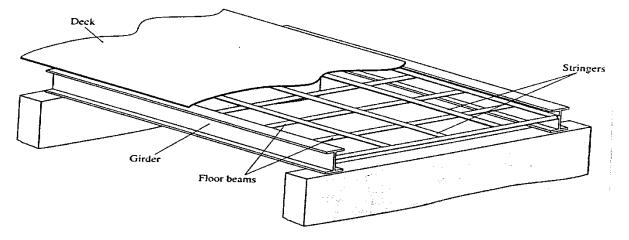


Influence Line for Bending Moment at E

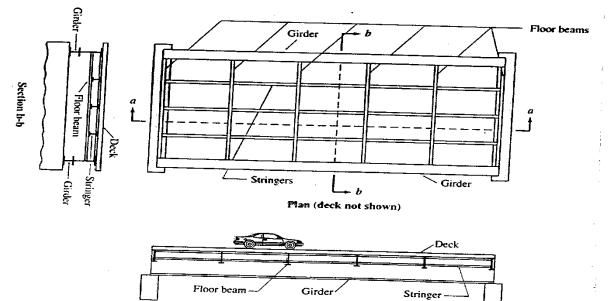
3.6 INFLUENCE LINE FOR FLOOR GIRDERS Floor systems are constructed as shown in figure below,



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (Cont'd)



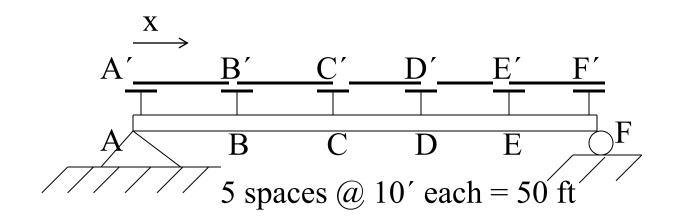
(a)



3.6 INFLUENCE LINES FOR FLOOR GIRDERS (Cont'd)

3.6.1 Force Equilibrium Method:

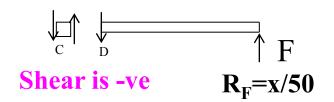
Draw the Influence Lines for: (a) Shear in panel CD of the girder; and (b) the moment at E.



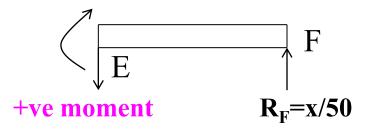
3.6.2 Place load over region A'B' (0 < x < 10 ft)

Find the shear over panel CD

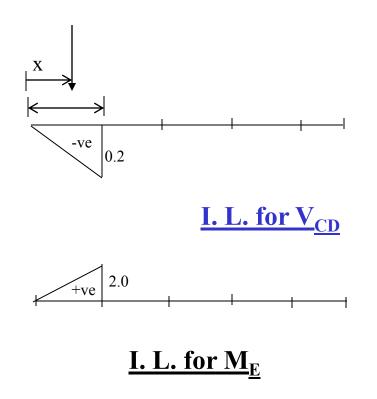
 $V_{CD} = -x/50$ At x=0, $V_{CD} = 0$ At x=10, $V_{CD} = -0.2$



Find moment at E = +(x/50)(10) = +x/5At x=0, M_E=0 At x=10, M_E=+2.0



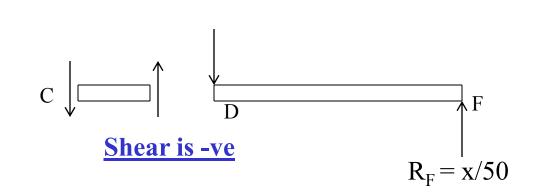
Continuation of the Problem



Problem Continued -

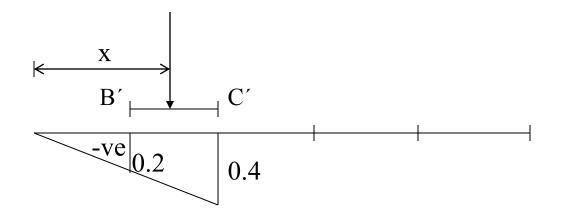
<u>3.6.3 Place load over region B'C'</u> (10 ft < x < 20ft)

 $V_{CD} = -x/50 \text{ kip}$ At x = 10 ft $V_{CD} = -0.2$ At x = 20 ft $V_{CD} = -0.4$

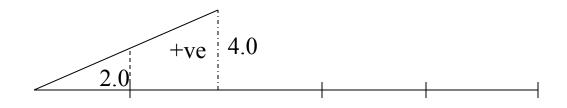


$$M_E = +(x/50)(10)$$

= +x/5 kip.ft
At x = 10 ft, $M_E = +2.0$ kip.ft
At x = 20 ft, $M_E = +4.0$ kip.ft



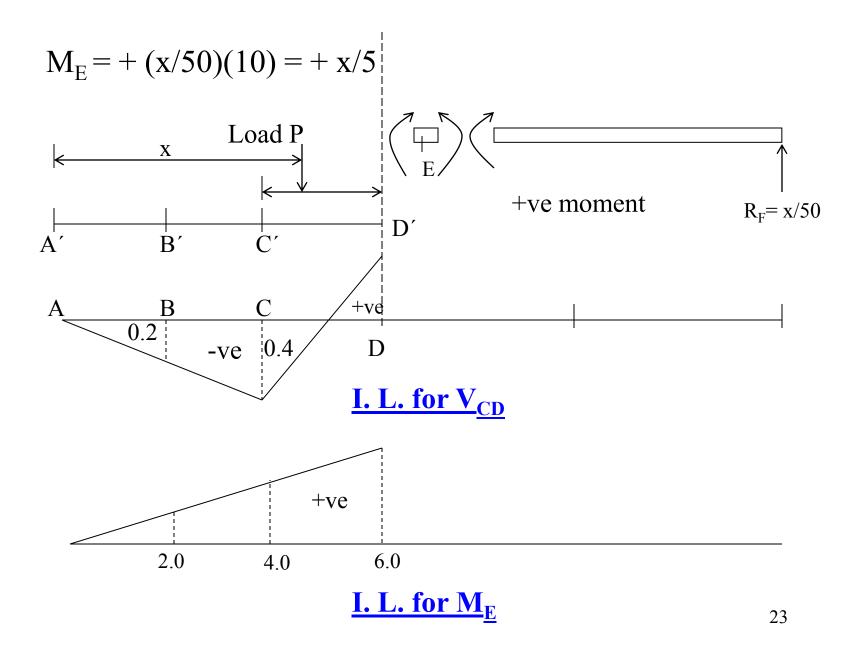
I. L. for V_{CD}



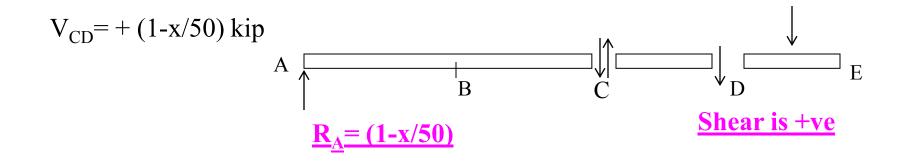
I.L. for M_E

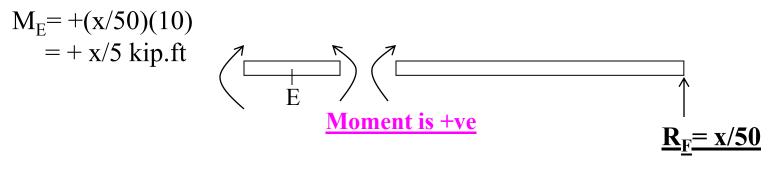
3.6.4 Place load over region C'D' (20 ft < x < 30 ft)

When the load is at C' (x = 20 ft)Shear is -ve $R_{\rm F} = 20/50$ $V_{CD} = -0.4 \text{ kip}$ =0.4<u>When the load is at D'</u> (x = 30 ft)A В С Shear is +ve $R_{A} = (50 - x)/50$ $V_{CD} = +20/50$ =+0.4 kip



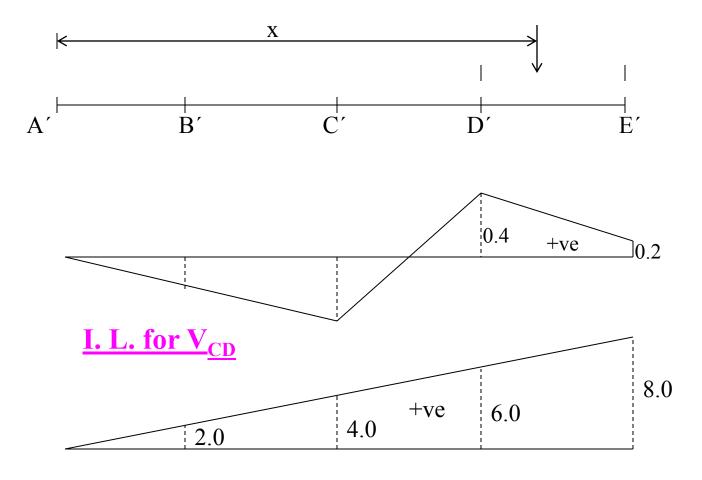
3.6.5 <u>Place load over region D'E'</u> (30 ft < x < 40 ft)





At x = 30 ft, $M_E = +6.0$ At x = 40 ft, $M_E = +8.0$

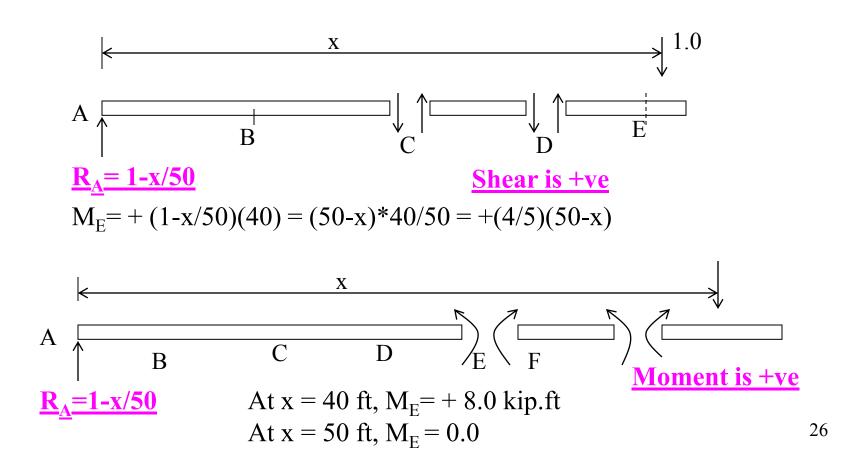
Problem continued

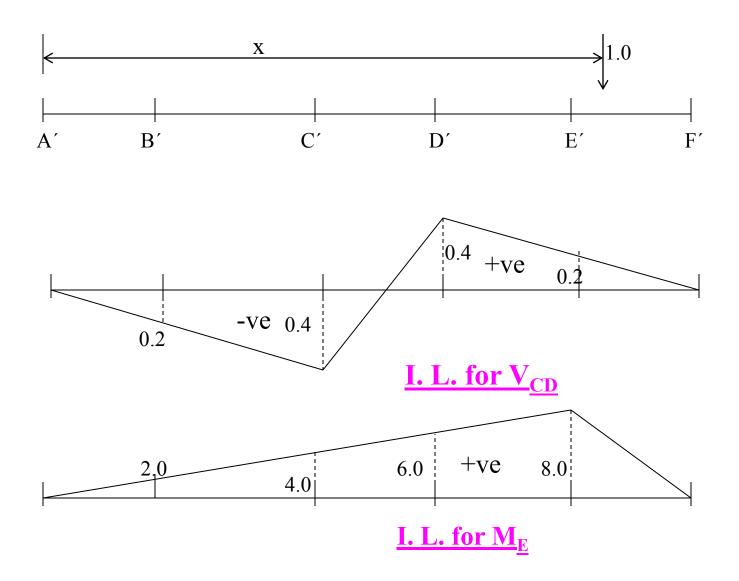


I. L. for M_E

3.6.6 Place load over region E'F' (40 ft < x < 50 ft)

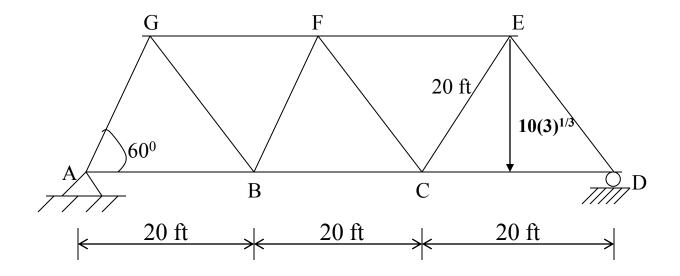
$$V_{CD} = +1 - x/50$$
 At $x = 40$ ft, $V_{CD} = +0.2$
At $x = 50$ ft, $V_{CD} = 0.0$





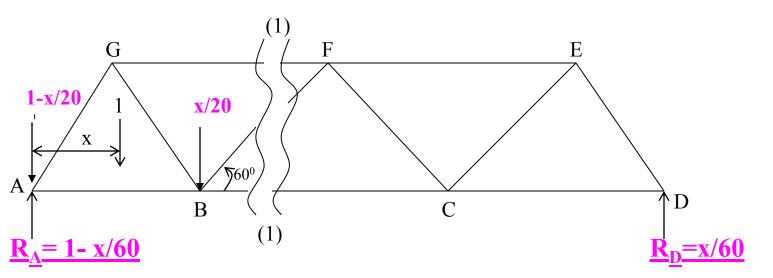
3.7 INFLUENCE LINES FOR TRUSSES

Draw the influence lines for: (a) Force in Member GF; and (b) Force in member FC of the truss shown below in Figure below



Problem 3.7 continued -3.7.1 Place unit load over AB

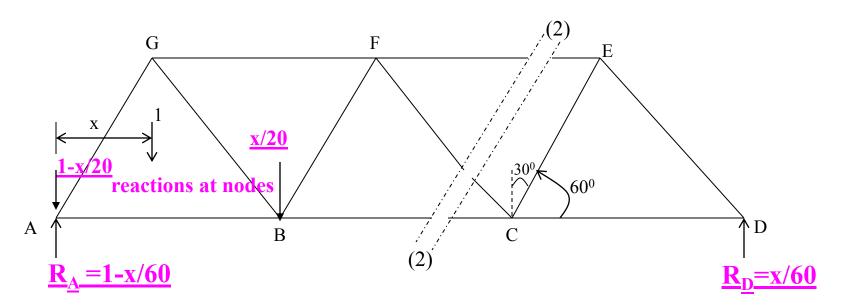
(i) To compute GF, cut section (1) - (1)



At
$$x = 0$$
,
 $F_{GF} = 0$
At $x = 20$ ft
 $F_{GF} = -0.77$

Taking moment about B to its right, $(R_D)(40) - (F_{GF})(10\sqrt{3}) = 0$ $F_{GF} = (x/60)(40)(1/10\sqrt{3}) = x/(15\sqrt{3}) (-ve)$

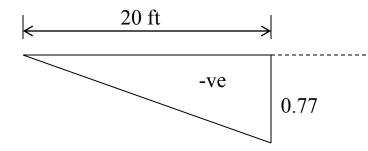
PROBLEM 3.7 CONTINUED -(ii) To compute F_{FC}, cut section (2) - (2)

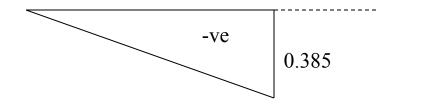


Resolving vertically over the right hand section $F_{FC} \cos 30^{0} - R_{D} = 0$ $F_{FC} = R_{D}/\cos 30 = (x/60)(2/\sqrt{3}) = x/(30\sqrt{3}) (-ve)$

At x = 0,
$$F_{FC} = 0.0$$

At x = 20 ft, $F_{FC} = -0.385$



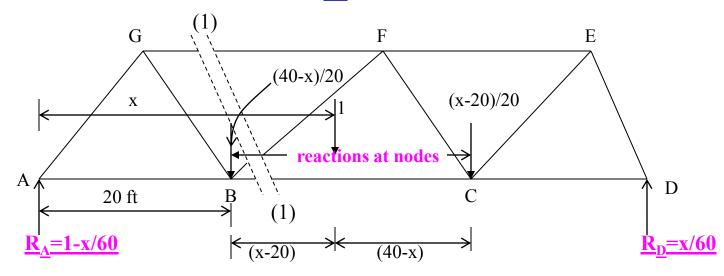


PROBLEM 3.7 Continued -

3.7.2 Place unit load over BC (20 ft < x <40 ft)

[Section (1) - (1) is valid for 20 < x < 40 ft]

(i) To compute F_{GF} use section (1) -(1)

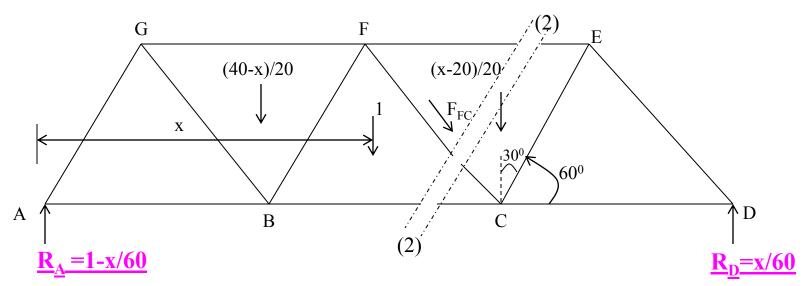


Taking moment about B, to its left, $(R_A)(20) - (F_{GF})(10\sqrt{3}) = 0$ $F_{GF} = (20R_A)/(10\sqrt{3}) = (1-x/60)(2/\sqrt{3})$

At x = 20 ft,
$$F_{FG} = 0.77$$
 (-ve)
At x = 40 ft, $F_{FG} = 0.385$ (-ve)

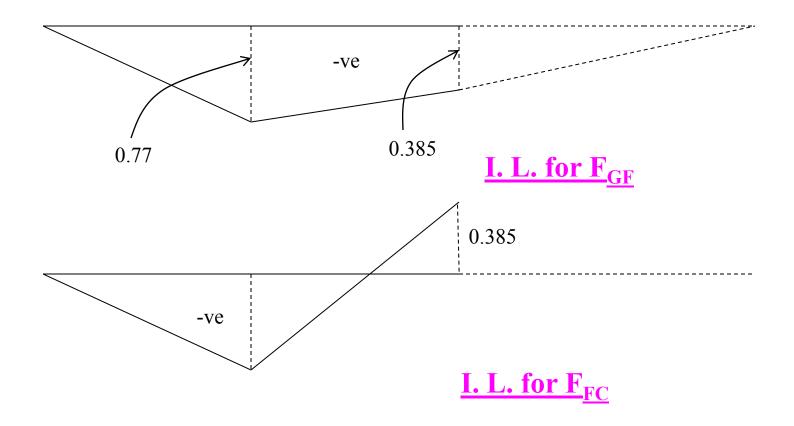
<u>PROBLEM 6.7 Continued -</u> (ii) To compute F_{FC}, use section (2) - (2)

Section (2) - (2) is valid for 20 < x < 40 ft



Resolving force vertically, over the right hand section, $F_{FC} \cos 30 - (x/60) + (x-20)/20 = 0$ $F_{FC} \cos 30 = x/60 - x/20 + 1 = (1-2x)/60$ (-ve) $F_{FC} = ((60 - 2x)/60)(2/\sqrt{3})$ -ve

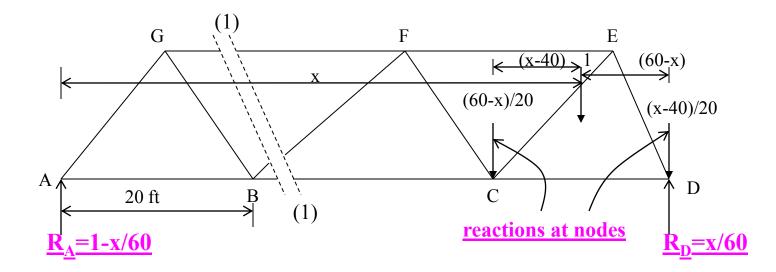
At x = 20 ft,
$$F_{FC} = (20/60)(2/\sqrt{3}) = 0.385$$
 (-ve)
At x = 40 ft, $F_{FC} = ((60-80)/60)(2/\sqrt{3}) = 0.385$ (+ve)



PROBLEM 3.7 Continued -

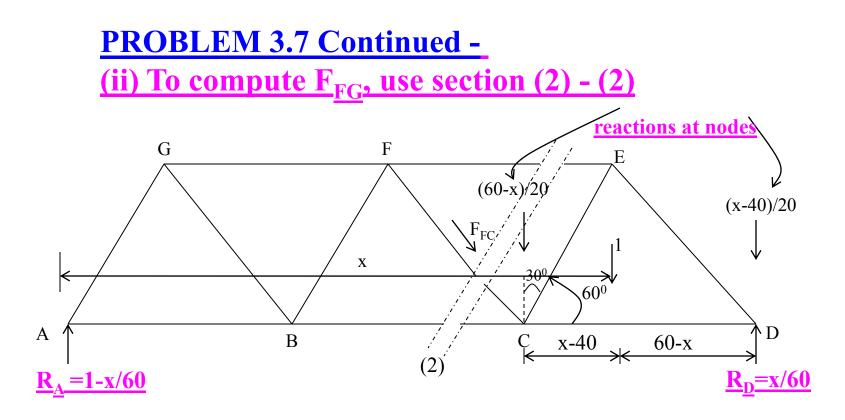
3.7.3 Place unit load over CD (40 ft < x <60 ft)

(i) To compute F_{GF}, use section (1) - (1)



Take moment about B, to its left, $(F_{FG})(10\sqrt{3}) - (R_A)(20) = 0$ $F_{FG} = (1-x/60)(20/10\sqrt{3}) = (1-x/60)(2/\sqrt{3}) -ve$

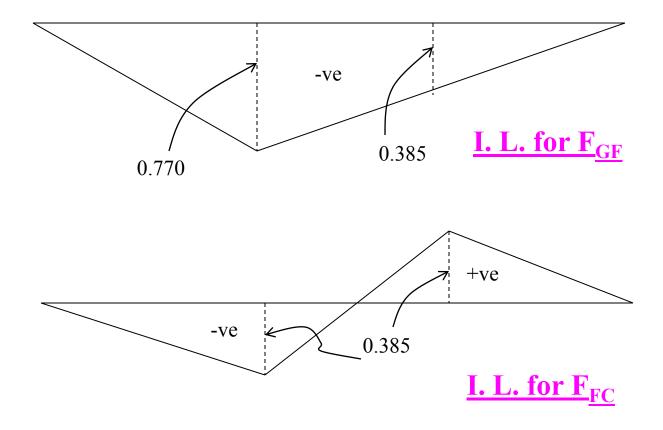
At x = 40 ft,
$$F_{FG} = 0.385$$
 kip (-ve)
At x = 60 ft, $F_{FG} = 0.0$



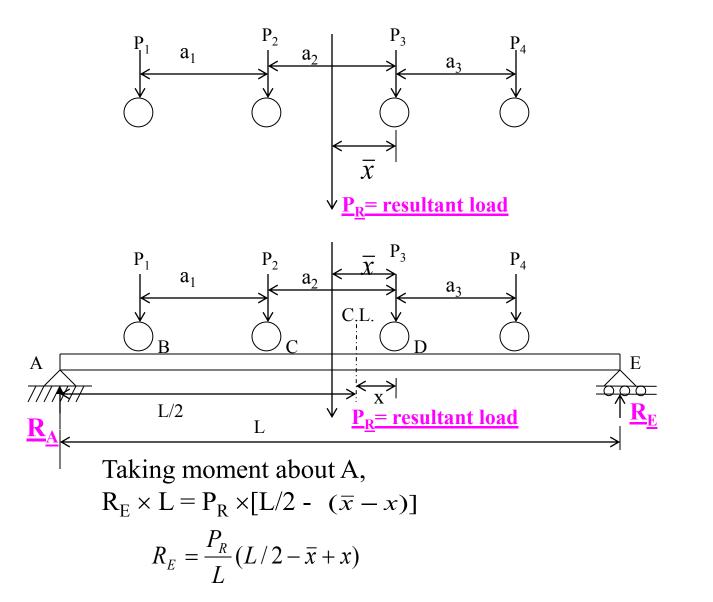
Resolving forces vertically, to the left of C,

(R_A) - F_{FC} cos 30 = 0
F_{FC} = R_A/cos 30 = (1-x/10) (2/
$$\sqrt{3}$$
) +ve

At x = 40 ft,
$$F_{FC} = 0.385$$
 (+ve)
At x = 60 ft, $F_{FC} = 0.0$



3.8 MAXIMUM SHEAR FORCE AND BENDING MOMENT UNDER A SERIES OF CONCENTRATED LOADS



38

Taking moment about E,

$$R_A \times L = P_R \times [L/2 + (\overline{x} - x)]$$
$$R_A = \frac{P_R}{L} (L/2 + \overline{x} - x)$$

$$M_{D} = R_{A} \times (L/2 + x) - P_{1}(a_{1} + a_{2}) - P_{2} \times a_{2}$$

$$= \frac{P_{R}}{L} (L/2 + \overline{x} - x)(L/2 + x) - P_{1}(a_{1} + a_{2}) - P_{2} \times (a_{2})$$

$$\frac{dM_{D}}{dx} = 0$$

$$0 = \frac{P_{R}}{L} (L/2 + \overline{x} - x) + \frac{P_{R}}{L} (L/2 + x)(-1)$$

$$= \frac{P_{R}}{L} [(L/2) + \overline{x} - x - (L/2) - x]$$
i.e., $\overline{x} - 2x = 0$

$$\overline{x} = 2x$$

$$x = \frac{\overline{x}}{2}$$

The centerline must divide the distance between the resultant of all the loads in the moving series of loads and the load considered under which maximum bending moment occurs.