Structural Analysis - III

Stiffness Method

Module II

Stiffness method

- Development of stiffness matrices by physical approach stiffness matrices for truss, beam and frame elements displacement transformation matrix - development of total stiffness matrix - analysis of simple structures - plane truss beam and plane frame- nodal loads and element loads - lack of fit and temperature effects.

FUNDAMENTALS OF STIFFNESS METHOD

Introduction

- Displacement components are the primary unknowns
- Number of unknowns is equal to the kinematic indeterminacy
- Redundants are the joint displacements, which are automatically specified
- Choice of redundants is unique
- Conducive to computer programming
- Stiffness method (displacements of the joints are the primary unknowns): kinematic indeterminacy

-kinematic indeterminacy

- joints: a) where members meet, b) supports, c) free ends
- joints undergo translations or rotations
-in some cases joint displacements will be known, from the restraint conditions
-the unknown joint displacements are the kinematically indeterminate quantities
- degree of kinematic indeterminacy: number of degrees of freedom
-in a truss, the joint rotation is not regarded as a degree of freedom. joint rotations do not have any physical significance as they have no effects in the members of the truss
-in a frame, degrees of freedom due to axial deformations can be neglected

Stiffness coefficients

-Example 2: Action-displacement equations for a beam subjected to

$$
A_{1}=A_{11}+A_{12}+A_{13}
$$

$A_{1}=S_{11} D_{1}+S_{12} D_{2}+S_{13} D_{3}$
$A_{2}=S_{21} D_{1}+S_{22} D_{2}+S_{23} D_{3}$
$A_{3}=S_{31} D_{1}+S_{32} D_{2}+S_{33} D_{3}$

Stiffness matrix

$$
\begin{aligned}
& A_{1}=S_{11} D_{1}+S_{12} D_{2}+S_{13} D_{3}+\ldots+S_{1 n} D_{n} \\
& A_{2}=S_{21} D_{1}+S_{22} D_{2}+S_{23} D_{3}+\ldots+S_{2 n} D_{n} \\
& \ldots \ldots_{n n} \ldots \\
& A_{n}=S_{n 1} D_{1}+S_{n 2} D_{2}+S_{n 3} D_{3}+\ldots+S_{n n} D_{n}
\end{aligned}
$$

$$
\boldsymbol{A}=\boldsymbol{S D} \quad\{A\}=[S]\{D\}
$$

- Action matrix, Stiffness matrix, Displacement matrix
-Stiffness coefficient $S_{i j}$

$$
\{A\}=[F]^{-1}\{D\} \Rightarrow[S]=[F]^{-1} \quad[F]=[S]^{-1}
$$

Stiffness method

(Direct approach: Explanation using principle of superposition)
Example: Propped cantilever (Kinematically indeterminate to first degree)

-degrees of freedom:
one

- Kinematically determinate structure is obtained by restraining all displacements (all displacement components made zero restrained structure)

Restraint at B causes a reaction of M_{B} as shown.

$$
M_{B}=-\frac{w L^{2}}{12}
$$

(Note the sign convention: anticlockwise positive)
The actual rotation at B is θ_{B}
Hence it is required to induce a rotation of θ_{B}

- Apply unit rotation corresponding to θ_{B}

Let the moment required for this unit rotation be m_{B}

$$
m_{B}=\frac{4 E I}{L} \quad \text { anticlockwise }
$$

- Moment required to induce a rotation of θ_{B} is $m_{B} \theta_{B}$

$$
\begin{aligned}
& M_{B}+m_{B} \theta_{B}=0 \quad \text { (Joint equilibrium equation) } \\
& -\frac{w L^{2}}{12}+\frac{4 E I}{L} \theta_{B}=0 \quad \therefore \theta_{B}=-\frac{M_{B}}{m_{B}}=\frac{w L^{3}}{48 E I}
\end{aligned}
$$

m_{B} (Moment required for unit rotation) is the stiffness coefficient here.

Stiffnesses of prismatic members

Stiffness coefficients of a structure are calculated from the contributions of individual members

Hence it is worthwhile to construct member stiffness matrices

$$
\left[S_{M i}\right]=\left[F_{M i}\right]^{-1}
$$

Memberstiffness matrix for prismatic beam member with

rotations at the ends as degrees of freedom

$$
\left[S_{M i}\right]=\frac{2 E I}{} \begin{array}{ll}
\underline{x} & 1 / \\
L & 1 \\
\underline{y} & 2_{f}^{\infty}
\end{array}
$$

Verification:

Memberstiffness matrix for prismatic beam member with

 deflection and rotation at one end as degrees of freedom$$
\begin{aligned}
& {\left[S_{M i}\right]=\begin{array}{ll}
S_{M 11} & S_{M 12} / \\
\underline{\xi}_{M 21} & S_{M 22} f
\end{array}} \\
& \begin{aligned}
& \frac{12 E I}{L^{3}}-\frac{6 E I /}{L^{2}} \infty \\
&= \\
& \vdots \\
& \frac{\prime}{\leq} \frac{6 E I}{L^{2}} \frac{4 E I}{L} \\
& \infty
\end{aligned}
\end{aligned}
$$

Verification:

- Truss member

$$
\left[S_{M i}\right]=\frac{E A}{L}
$$

-Plane frame member

$$
\begin{aligned}
& \begin{array}{lll}
{ }^{\prime} 0 & -\frac{6 E I}{} & \frac{4 E I}{L^{2}} \\
\leq & \infty \\
f
\end{array}
\end{aligned}
$$

- Space frame member

$$
\begin{aligned}
& \begin{array}{llllll}
\underset{L}{E A} & 0 & 0 & 0 & 0 & 0
\end{array} \begin{array}{l}
/ \\
\infty \\
\infty
\end{array} \\
& { }^{\prime}{ }^{\prime} \text {, } \frac{12 E I_{Z}}{L^{3}} \quad 0 \quad 0 \quad 0 \quad \frac{-6 E I_{Z}^{\infty}}{L^{2}}{ }_{\infty}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
{ }^{\prime} \\
, 0 & 0 & \frac{6 E I_{Y}}{L^{2}} & 0 & \frac{4 E I_{Y}}{L} & 0 & \infty \\
\infty \\
\infty
\end{array} \\
& \begin{array}{lllllll}
\prime \\
{ }^{\prime} 0 & -\frac{6 E I_{Z}}{L^{2}} & 0 & 0 & 0 & \frac{4 E I_{Z}}{L} & \infty \\
\infty
\end{array}
\end{aligned}
$$

Formalization of the Stiffness method

(Explanation using principle of complimentary virtual work)

$$
\left\{A_{M i}\right\}=\left[S_{M i}\right]\left\{D_{M i}\right\}
$$

Here $\left\{D_{M i}\right\}$ contains relative displacements of the k end with respect to j end of the i-th member

If there are m members in the structure,

$$
\left\{A_{M}\right\}=\left[S_{M}\right]\left\{D_{M}\right\}
$$

[S_{M}] is the unassembled stiffness matrix of the entire structure

- Relative end-displacements in $\left\{D_{M}\right\}$ will be related to a vector of joint displacements for the whole structure, $\left\{D_{J}\right\}$

$$
\left\{D_{M}\right\}=\left[C_{M J}\right]\left\{D_{J}\right\}
$$

$\left[C_{M J}\right]$ displacement transformation matrix (compatibility matrix)
$\left\{D_{J}\right\} \quad$ consists of: $\quad \begin{aligned} & \text { free (unknown) joint displacements }\left\{D_{F}\right\} \\ & \\ & \\ & \text { and restraint displacements }\left\{D_{R}\right\}\end{aligned}$

- If there are no support displacements specified, $\left\{D_{R}\right\}$ will be a null matrix
- Hence, $\left.\left\{D_{M}\right\}=\left[C_{M J}\right]\left\{D_{J}\right\}=\left[C_{M F}\right] \quad\left[C_{M R}\right]_{D_{R}}^{q\left\{D_{F}\right\}}\right\} \leftrightarrow \uparrow$
- Elements in displacement transformation matrix
(compatibility matrix) $\left[C_{M J}\right]$ are found from compatibility conditions.

- Each column in the submatrix $\left[C_{M F}\right]$ consists of member displacements caused by a unit value of an unknown displacement applied to the restrained structure.
- Each column in the submatrix $\left[C_{M R}\right]$ consists of member displacements caused by a unit value of a support displacement applied to the restrained structure.
- Suppose an arbitrary set of virtual displacements $\left\{\delta D_{M}\right\}$ is applied on the structure.
- External virtual work produced by the virtual displacements $\left\{\delta D_{J}\right\}$ and real loads $\left\{A_{J}\right\}$ is

$$
\left.\delta W=\left\{A_{J}\right\}^{\mathrm{T}}\left\{\delta D_{J}\right\}=\underset{\leq}{\mathfrak{Y}} A_{F}\right\}^{\mathrm{T}} \quad\left\{\delta A_{R}\right\}^{\mathrm{T}} \delta D_{F} \stackrel{\delta D_{i}}{\uparrow}
$$

- Internal virtual work produced by the virtual (relative) end displacements $\left\{\delta D_{M}\right\}$ and actual member end actions $\left\{A_{M}\right\}$ is

$$
\delta U=\left\{A_{M}\right\}^{\mathrm{T}}\left\{\delta D_{M}\right\}
$$

- Equating the above two (principle of virtual work),

$$
\left\{A_{J}\right\}^{\mathrm{T}}\left\{\delta D_{J}\right\}=\left\{A_{M}\right\}^{\mathrm{T}}\left\{\delta D_{M}\right\}
$$

But $\left\{D_{M}\right\}=\left[C_{M J}\right]\left\{D_{J}\right\}$ and $\left\{A_{M}\right\}=\left[S_{M}\right]\left\{D_{M}\right\}$
Also, $\left\{\delta D_{M}\right\}=\left[C_{M J}\right]\left\{\delta D_{J}\right\}$

Hence, $\left\{A_{J}\right\}^{\mathrm{T}}\left\{\delta D_{J}\right\}=\left\{D_{J}\right\}^{\mathrm{T}}\left[C_{M J}\right]^{\mathrm{T}}\left[S_{M}\right]^{\mathrm{T}}\left[C_{M J}\right]\left\{\delta D_{J}\right\}$

$$
\left\{A_{J}\right\}=\left[S_{J}\right]\left\{D_{J}\right\}
$$

Where, $\left[S_{J}\right]=\left[C_{M J}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M J}\right.$, the assembled stiffness matrix for the entire structure.

- It is useful to partition $\left[S_{J}\right]$ into submatrices pertaining to free (unknown) joint displacements $\left\{D_{F}\right\}$ and restraint displacements $\left\{D_{R}\right\}$

Where, $\left[S_{F F}\right]=\left[C_{M F}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M F}\right] \quad\left[S_{F R}\right]=\left[C_{M F}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M R}\right]$

$$
\left[S_{R F}\right]=\left[C_{M R}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M F}\right] \quad\left[S_{R R}\right]=\left[C_{M R}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M R}\right]
$$

$$
\begin{aligned}
&\left\{A_{F}\right\}=\left[S_{F F}\right]\left\{D_{F}\right\}+\left[S_{F R}\right]\left\{D_{R}\right\} \quad\left\{A_{R}\right\}=\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\} \\
&\left.\Rightarrow\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\right\}\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\} f
\end{aligned}
$$

- Support reactions

If actual or equivalent joint loads are applied directly to the supports,

$$
\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\}
$$

$\left\{A_{R C}\right\} \begin{aligned} & \text { represents combined joint loads (actual and equivalent) applied } \\ & \text { directly to the supports. }\end{aligned}$
-Member end actions are obtained adding member end actions calculated as above and initial fixed-end actions

$$
\begin{gathered}
\text { i.e., }\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left[C_{M J}\right]\left\{D_{J}\right\} \\
\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
\end{gathered}
$$

where $\left\{A_{M L}\right\}$ represents fixed end actions

Important formulae:

Joint displacements: $\quad\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f}$

Support reactions: $\quad\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\}$

Member end actions:

$$
\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
$$

- Problem 1

Kinematic indeterminacy $=$ 2
Member stiffness matrix of beam member $\left[S_{M i}\right]=\frac{2 E I}{2} \quad \begin{array}{ll}1 / \\ \underline{y} & 2_{f}^{\infty}\end{array}$
\(\begin{gathered}

Unassembled stiffness matrix\end{gathered}\left[S_{M}\right]=\frac{2 E I}{} 2\)| 2 | 4 | 0 | 0∞ |
| :--- | :--- | :--- | :--- |
| L | 0 | 0 | 2 |
| ∞ | | | |

Fixed end actions

Equivalent joint loads

Free (unknown) joint displacements $\left\{D_{F}\right\} \quad$ Restraint displacements $\left\{D_{R}\right\}$

(c)

Joint displacements
Free (unknown) joint displacements $\left\{D_{F}\right\} \quad$ Restraint displacements $\left\{D_{R}\right\}$

- Each column in the submatrix $\left[C_{M F}\right]$ consists of member displacements caused by a unit value of an unknown displacement applied to the restrained structure.
- Each column in the submatrix $\left[C_{M R}\right]$ consists of member displacements caused by a unit value of a support displacement applied to the restrained structure.

$$
\begin{aligned}
& \begin{array}{llll}
D_{R 1} & D_{R 2} & D_{R 3} & D_{R 4}
\end{array} \\
& =1=1 \quad=1 \quad=1 \\
& \text { ๆ1 } \quad 1 \quad-1 / L \quad 0 \quad /
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\varrho}{\varrho} \quad 0 \quad 1 / L \quad-1 / L_{f}^{\infty} \\
& \begin{array}{lllllll}
\boldsymbol{D}_{F 1} & \boldsymbol{D}_{F 2} & \boldsymbol{D}_{\boldsymbol{R} 1} & \boldsymbol{D}_{R 2} & \boldsymbol{D}_{R 3} & \boldsymbol{D}_{\boldsymbol{R} 4}
\end{array} \\
& =1=1=1 \quad=1=1=1
\end{aligned}
$$

Joint displacements

$$
\begin{aligned}
& \left\{\left\{_{R}\right\}=\left[S_{r f}\right]^{\prime}\left\{A_{f} A_{f}\right\}-\left[S_{r R}\right]\left\{D_{R}\right\}_{f}\right. \\
& \left\{D_{R}\right\} \quad \text { is a null matrix, since there are no } \\
& \text { support displacements } \\
& \therefore\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 E I}{L} \stackrel{1}{\natural} \quad 2{ }_{f}^{\infty}
\end{aligned}
$$

$$
\left[S_{F R}\right]=\left[C_{M F}\right]^{[}\left[S_{M}\right]\left[C_{M R}\right]
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
& 2 & 0 & 0 & \mathbf{r} & L & -1 & 0 /
\end{array}
\end{aligned}
$$

$$
=\frac{P L^{2}}{18 E I} \cdot \frac{1}{11}: 0 \leftrightarrow \ll=\frac{P L^{2}}{18 E I} \stackrel{\leftrightarrow}{4} \leftrightarrow
$$

Support reactions $\quad\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\}$
$\left\{D_{R}\right\}$ is a null matrix.

$$
\therefore\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}
$$

$\left[S_{R Y}\right]=\left[C_{N K}\right]\left[S_{N}\right]\left[C_{w N}\right]$

$$
\begin{aligned}
& 16 \quad 0 / \\
& =\frac{2 E I^{\prime} L L}{L^{2}} \stackrel{1}{2} \begin{array}{ll}
0^{\infty} \\
\infty \\
3 \infty
\end{array} \\
& \leq 3 \quad-3{ }_{f}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[S_{k x}\right]=\left[C_{w k}\right]\left[S_{w}\right]\left[C_{w v k}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& 112 \quad 6 L \quad-12 \quad 0 /
\end{aligned}
$$

$$
\therefore\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}
$$

Member end actions

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right) \\
& \left\{D_{R}\right\} \text { is a null matrix } \\
& \therefore\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left[C_{M F}\right]\left\{D_{F}\right\}
\end{aligned}
$$

Alternatively, if the entire $\left[S_{J}\right]$ matrix is assembled at a time,

$$
\begin{aligned}
& \begin{array}{llllllllllll}
10 & L & L & 0 / & & & & \\
\hline, 0 & 0 & 0 & L_{\infty}^{\infty} & \Upsilon 4 & 2 & 0 & 0 / & \Upsilon 0 & 0 & 1 & L \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\prime \\
\hline
\end{array} 0
\end{aligned}
$$

- Problem 2:

Kinematic indeterminacy $=3$ (Not considering joint D in the overhanging portion)

Member stiffness matrix of beam member $\left[S_{M i}\right]=\frac{2 E I}{\substack{x}} \begin{aligned} & 1 / \\ & 4 \\ & \xi_{f}^{\prime}\end{aligned}$

Unassembled stiffness matrix \(\quad\left[S_{M}\right]=\begin{array}{r}2 E I

4\end{array}\)| 1 | 2 | 0 | 0∞ | |
| :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 2 | 1∞ |
| | ϱ | 0 | 1 | 2 |
| f | | | | |

Equivalent joint loads + actual joint loads

(9)

$$
\left(\begin{array}{c}
0
\end{array}\right.
$$

Joint displacements

$$
\begin{aligned}
& \therefore\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\} \quad \therefore\left\{D_{R}\right\} \text { is a null matrix. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{r} & 0.5 & 0 / \\
=E I^{\prime} 0.5 & 2 & 0.5^{\infty} \\
\vdots 0 & 0.5 & 19
\end{array}
\end{aligned}
$$

Memberend actions

$$
\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
$$

$\left\{D_{R}\right\}$ is a null matrix $\therefore\left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left[C_{M F}\right]\left\{D_{F}\right\}$

- Problem 3

Analyse the beam. Support B has a downward settlement of 30 mm . $\mathrm{EI}=5.6 \times 10^{3} \mathrm{kNm}^{2}$

$\left[C_{M F}\right]$ and $\left[C_{M R}\right]$ consist of member displacements due to unit displacements on the restrained structure.

$$
\begin{aligned}
& \text { B } \\
& \left.{ }^{-1 / 3}\right)^{1 / 6}(\square)
\end{aligned}
$$

Joint displacements

$$
\begin{aligned}
& \left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f} \\
& {\left[S_{F F}\right]=\left[C_{M F}\right]^{T}\left[S_{M}\right]\left[C_{M F}\right]}
\end{aligned}
$$

$\left[S_{F R}\right]=\left[C_{M F}\right]\left[S_{M}\right]\left[C_{M K}\right]$

$$
\begin{aligned}
& \left\{D_{F}\right\}=\left[S_{F F}\right]^{-1} \underline{\{ }\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f}
\end{aligned}
$$

Support reactions

$$
\left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\}
$$

$\left[S_{R F}\right]=\left[C_{M R}\right]\left[S_{M}\right]\left[C_{M F}\right]$

$=\frac{E I}{3}\left[\begin{array}{lll}-3 / 2 & 1 / 2 & 0\end{array}\right]$

$$
\begin{aligned}
& {\left[S_{R R}\right]=\left[C_{M R}\right]\left[S_{M}\right]\left[C_{M R}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
-1 / 3 & -1 / 3 & 1 / 6 & 1 / 6 & 0 & 0
\end{array}\right] \frac{E I}{\underline{E}}{ }_{3}^{0}{ }_{0}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E I /}{\leq 29}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E I}{3}(0.0116-0.045)=-0.0334 \frac{E I}{3}=-62.35
\end{aligned}
$$

(Support reaction corresponding to D_{R}. ie., reaction at B)

Member end actions

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } 83.7 \leftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow 40.3 \\
& \stackrel{\square}{\bullet} 0
\end{aligned}
$$

Alternatively, if the entire $\left[S_{J}\right]$ matrix is assembled at a time,

$\left[S_{J}\right]=\left[C_{w w}\right]^{\mathrm{T}}\left[S_{N}\right]\left[C_{w w}\right]$

$$
\begin{aligned}
& \begin{array}{llll}
\text { rn } & 0 & 0 & -2 /
\end{array} \\
& \begin{array}{rlllllllll}
\Upsilon & 0 & 1 & 1 & 0 & 0 & 0 / 4 & 0 & 0 & -2_{\infty}^{\infty} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccccccc}
\leq-1 / 3 & -1 / 3 & 1 / 6 & 1 / 6 & 0 & 0 f_{f}^{\prime} 0 & 4 & 2 & 0 & \infty \\
\underline{9} & 2 & 4 & 0 & f
\end{array}
\end{aligned}
$$

Alternatively, if ALL possible support settlements are accounted for,

$$
\begin{aligned}
& \begin{array}{ccccccc}
\text { Yo } & 0 & 0 & 1 / 3 & 1 & -1 / 3 & 0 \\
, 1 & 0 & 0 & 0 \\
, 1 / 3 & 0 & -1 / 3 & 0 & 0 & \infty_{\infty}^{\infty} \\
\infty
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllll}
\prime 0 & 1 & 0 & 0 & 0 & 0 & 1 / 3 & -1 \beta_{\infty}^{\infty}
\end{array} \\
& {\left[S_{J}\right]=\left[C_{M J}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{W H}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
\Upsilon & 0 & 1 & 1 & 0 & 0 & 0
\end{array} \\
& \text {, } 0 \begin{array}{llllllllllllll}
1 \\
\hline
\end{array} \\
& \text { ' } 0 \begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccccccccccccc}
-1 \not p & -1 / 3 & 1 / 6 & 1 / 6 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 0 & 2 & -2 \infty \\
: & 0 & 0 & -1 / 6 & -1 / 6 & 1 / 3 & 1 / 3 & \infty & \infty & 2 & 4 & 0 & 0 & 0 \\
\infty & 2 & -2 f_{f}^{\infty}
\end{array} \\
& \begin{array}{llllll}
\\
\leq & 0 & 0 & 0 & 0 & -1 / 3
\end{array}-1 / 3{ }_{f}^{\infty} \\
& \begin{array}{llll|llcccc}
\Upsilon & 6 & 1 & 0 & 2 & 2 & -3 / 2 & -1 / 2 & 0 & / \\
, & 1 & 6 & 2 & 0 & 0 & 1 / 2 & 3 / 2 & -2 & \infty \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc|ccccc}
-32 & 1 / 2 & 0 & -4 / 3 & -2 & 3 / 2 & -1 / 6 & 0 \\
\infty \\
-12 & 3 / 2 & 2 & 0 & 0 & -1 / 6 & 3 / 2 & -4 / 3 \infty
\end{array} \\
& \begin{array}{lll|lllll}
\leq 0 & -2 & -2 & 0 & 0 & 0 & -4 / 3 & 4 / 3
\end{array}
\end{aligned}
$$

Joint displacements

$$
\begin{aligned}
& \left\{D_{F}\right\}=\left[S_{F F}\right]^{-1} \underline{\{ }\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ' } 2-1235 \text { 个 } 25 \uparrow \\
& \hat{\boldsymbol{\gamma}} 0 \\
& \text { ¥0 } \quad-4 \quad 2 / \$ 84 \leftrightarrow
\end{aligned}
$$

Support reactions

$$
\begin{aligned}
& \left\{A_{R}\right\}=-\left\{A_{R C}\right\}+\left[S_{R F}\right]\left\{D_{F}\right\}+\left[S_{R R}\right]\left\{D_{R}\right\}
\end{aligned}
$$

Member end actions

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
\end{aligned}
$$

- $\left[C_{M F}\right]$ consists of member displacements due to unit displacements on the restrained structure.

Joint displacements

$$
\left\{D_{r}\right\}=\left[S_{r F}\right]^{\prime}\left\{A_{f}\right\}-\left[S_{r f}\right]\left\{D_{R}\right\}_{f}
$$

$\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}$ since there are no support displacements.

$$
\left[S_{F F}\right]=\left[C_{M F}\right]\left[S_{M}\right]\left[C_{M F}\right]
$$

Member end actions

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
\boldsymbol{\uparrow} & 0 & \uparrow & , & 0 & 0 & 0 & 0 & 4 / 8 & 2 / 8 \infty \\
\boldsymbol{\uparrow} & 0 & \uparrow & \leq & 1 \infty \\
\boldsymbol{\uparrow} & 0 & \uparrow & \leq & 0 & 0 & 0 & 2 / 8 & 4 / 8 \text { \& } & 0 \infty
\end{array}
\end{aligned}
$$

- Homework 2:

- Problem 5

Unassembled stiffness matrix $\left[S_{M}\right]=\frac{2 E I}{L}$| 0 | 0 | 2 | 1 | 0 | 0∞ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 1 | 2 | 0 | 0_{∞}^{∞} |
| 0 | 0 | 0 | 0 | 2 | 1∞ |
| 1 | $\underline{\infty}$ | 0 | 0 | 0 | 1 |

(b)

$$
\begin{aligned}
& D_{F 1} \quad D_{F 2} \quad D_{F 3} \\
& =1 \quad=1 \quad=1 \\
& \begin{array}{lll}
\mathfrak{0} & 0 & 1 / L / \\
{ }^{1} & 0 & 1 / L^{\infty}
\end{array} \\
& {\left[C_{M F}\right]=\begin{array}{cccc}
\begin{array}{c}
1 \\
\prime
\end{array} & 0 & 0 & \infty \\
0 & 1 & 0 & \begin{array}{c}
\infty \\
\infty
\end{array}
\end{array}} \\
& \begin{array}{lll}
\prime 0 & 1 & 1 / L \infty \\
\varrho & 0 & 1 / L \stackrel{\infty}{f}
\end{array}
\end{aligned}
$$

(c)

(d)

$$
\begin{aligned}
& {\left[S_{F F}\right]=\left[C_{M F}{ }^{T}\left[S_{M}\right]\left[C_{M F}\right]\right.} \\
& \left.0 \begin{array}{llllllllllllll}
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Joint displacements

$$
\left.\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1} \leq t_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f}
$$

$\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}$, since there are no support displacements.

Member end actions

$$
\begin{aligned}
& \left\{A_{N}\right\}=\left\{A_{M K}\right\}+\left[S_{M}\right]\left[\left[C_{N F}\right]\left\{D_{F}\right\}+\left[C_{M N}\right]\left\{D_{R}\right\}\right) \\
& \left\{A_{\mu}\right\}=\left[S_{\mu}\right]\left[C_{M N}\right]\left\{D_{F}\right\} \\
& \begin{array}{llllllll}
x & 1 & 0 & 0 & 0 & 0 / Q & 0 & 1 / L / \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 / L_{\infty}^{\infty}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
1 \\
\underline{\theta} & 0 & 0 & 0 & 1 & 2 \text { 臽 } & 0 & 1 / L f
\end{array}
\end{aligned}
$$

-Problem 6:

$$
\begin{aligned}
& D_{F 1} \quad D_{F 2} \\
& =1 \quad=1 \\
& \text { Q:8 -0.6/ } \\
& {\left[C_{M F}\right]=\begin{array}{cc}
\begin{array}{c}
,-0.8 \\
\\
\underline{.} 8
\end{array} & 0.6_{\infty}^{\infty} \\
0.6 \propto
\end{array}}
\end{aligned}
$$

Joint displacements

$$
\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1} \mathfrak{\&}\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\} f
$$

$\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}$, since there are no support displacements.

$$
\begin{aligned}
& {\left[S_{F F}\right]=\left[C_{M F}\right]^{\mathrm{T}}\left[S_{M}\right]\left[C_{M F}\right]=\begin{array}{ll}
\text { Q.384 } & -0.096 / \\
\leq 0.096 & 0.216 f^{\infty}
\end{array}}
\end{aligned}
$$

MemberForces:

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right) \\
& =\left[S_{M}\right]\left[C_{M F}\right]\left\{D_{F}\right\}
\end{aligned}
$$

- Problem 7:

Joint displacements

$$
\begin{aligned}
& \left\{D_{F}\right\}=\left[S_{F F}\right]^{-1} \underline{\{ }\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}_{f} \\
& \left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}, \text { since there are no support displacements. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[S_{F F}\right]=\left[C_{M F}\right]^{T}\left[S_{M}\right]\left[C_{M F}\right]=\begin{array}{ll}
0.144 & 0.000 \\
{ }_{\underline{Q}}^{0.000} & 0.756 f_{f}^{\circ}
\end{array}}
\end{aligned}
$$

MemberForces:

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right) \\
& \left\{A_{M}\right\}=\left[S_{M}\right]\left[C_{M F}\right]\left\{D_{F}\right\}
\end{aligned}
$$

- Problem 8 (Homework 3):

$\begin{array}{lrlll} & & \Upsilon 0.866 & 0.000 & 0.000 / \\ \text { Unassembled stiffness matrix } \\ & {\left[S_{M}\right]=} & \prime, \\ & 0.000 & 1.000 & 0.000_{\infty}^{\infty} \\ \leq & \leq 0.000 & 0.000 & 0.500 \propto\end{array}$

Joint displacements

$$
\left.\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\right\}\left\{A_{F}\right\}-\left[S_{F R}\right]\left\{D_{R}\right\}
$$

$\left\{D_{F}\right\}=\left[S_{F F}\right]^{-1}\left\{A_{F}\right\}$, since there are no support displacements.

$$
\begin{aligned}
& \left\{D_{F}\right\}=\begin{array}{ll}
0.577 \\
=0.155 & -0.155 / 5 \leftrightarrow \\
\hline
\end{array}
\end{aligned}
$$

MemberForces:

$$
\begin{aligned}
& \left\{A_{M}\right\}=\left\{A_{M L}\right\}+\left[S_{M}\right]\left(\left[C_{M F}\right]\left\{D_{F}\right\}+\left[C_{M R}\right]\left\{D_{R}\right\}\right) \\
& \left\{A_{M}\right\}=\left[S_{M}\right]\left[C_{M F}\right]\left\{D_{F}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \$. } 830 \leftrightarrow \\
& =\$.887 \stackrel{\uparrow}{\leftarrow}
\end{aligned}
$$

- Homework 4:

$A E$ is constant.

Summary

Stiffness method

- Development of stiffness matrices by physical approach stiffness matrices for truss, beam and frame elements displacement transformation matrix - development of total stiffness matrix - analysis of simple structures - plane truss beam and plane frame- nodal loads and element loads - lack of fit and temperature effects.

