Structural Analysis - III

Introduction to Matrix Methods

Module I

Matrix analysis of structures

- Definition of flexibility and stiffness influence coefficients development of flexibility matrices by physical approach \& energy principle.

Flexibility method

- Flexibility matrices for truss, beam and frame elements load transformation matrix-development of total flexibility matrix of the structure -analysis of simple structures plane truss, continuous beam and plane frame- nodal loads and element loads - lack of fit and temperature effects.

Force method and Displacement method

- These methods are applicable to discretized structures of all types
- Force method (Flexibility method)
- Actions are the primary unknowns
- Static indeterminacy: excess of unknown actions than the available number of equations of static equilibrium
- Displacement method (Stiffness method)
-Displacements of the joints are the primary unknowns
-Kinematic indeterminacy: number of
independent translations and rotations (the unknown joint displacements)
- M ore suitable for computer programming

Types of Framed Structures

-a. Beams: may support bending moment, shear force and axial force

(a)

(b)
-b. Plane trusses: hinge joints; In addition to axial forces, a member CAN have bending moments and shear forces if it has loads directly acting on them, in addition to joint loads
-c. Space trusses: hinge joints; any couple acting on a member should have moment vector perpendicular to the axis of the member, since a truss member is incapable of supporting a twisting moment

(c)

(d)
-d. Plane frames: Joints are rigid; all forces in the plane of the frame, all couples normal to the plane of the frame
$\bullet e$. Grids: all forces normal to the plane of the grid, all couples in the plane of the grid (includes bending and torsion)

-f. Space frames: most general framed structure; may support bending moment, shear force, axial force and torsion

Deformations in Framed Structures

Three forces: $N_{x}, V_{y}, V_{z} \quad$ Three couples: $\quad T_{x}, M_{y}, M_{z}$

- Significant deformations in framed structures:

Structure	Significant deformations
Beams	flexural
Plane trusses	axial
Space trusses	axial
Plane frames	flexural and axial
Grids	flexural and torsional
Space frames	axial, flexural and torsional

Types of deformations in framed structures
b) axial c) shearing d) flexural e) torsional

Static indeterminacy

- Beam:
-Static indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-3
$$

- Examples:
- Single span beam with both ends hinged with inclined loads
- Continuous beam
- Propped cantilever
- Fixed beam

Structure
(a) 移

(c)

Static
Indeterainacy

0

1

3

- Rigid frame (Plane):
- External indeterminacy = Reaction components - number of eqns available $\quad E=R-3$
- Internal indeterminacy $=3 \times$ closed frames $\quad I=3 a$
- Total indeterminacy
= External indeterminacy + Internal indeterminacy

$$
T=E+I=(R-3)+3 a
$$

- Note: An internal hinge will provide an additional eqn

Examole 1

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(2 \times 2-3)+3 \times 0=1
\end{aligned}
$$

Example 3

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(3 \times 2-3)+3 \times 3=12
\end{aligned}
$$

Examole 2

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(3 \times 3-3)+3 \times 2=12
\end{aligned}
$$

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(4 \times 3-3)+3 \times 4=21
\end{aligned}
$$

- Rigid frame (Space):

-External indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-6
$$

- Internal indeterminacy $=6 \times$ closed frames

Example 1

$$
\begin{aligned}
T & =E+I=(R-6)+6 a \\
& =(4 \times 6-6)+6 \times 1=24
\end{aligned}
$$

If axial deformations are neglected, static indeterminacy is not affected since the same number of actions still exist in the structure

- Plane truss (general):
- External indeterminacy
$=$ Reaction components - number of eqns available

$$
E=R-3
$$

- Minimum 3 members and 3 joints.
- A ny additional joint requires 2 additional members.
- Hence, number of members for stability,

$$
m=3+2(j-3)=2 j-3
$$

- Hence, internal indeterminacy, $\quad I=m-(2 j-3)$
- Total (Internal and external) indeterminacy

$$
\begin{aligned}
T & =E+I=R-3+m-(2 j-3) \\
& =m+R-2 j
\end{aligned}
$$

- m : number of members
- $R \quad$: number of reaction components
- j : number of joints
- N ote: Internal hinge will provide additional eqn

Example 1

$$
\begin{aligned}
& T=m+R-2 j=9+3-2 \times 6=0 \\
& E=R-3=3-3=0 \\
& I=T-E=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& T=m+R-2 j=15+4-2 \times 8=3 \\
& E=R-3=4-3=1 \\
& I=T-E=2
\end{aligned}
$$

Example 3

$$
\begin{aligned}
T & =m+R-2 j=6+4-2 \times 5=0 \\
E & =R-(3+1)=4-4=0 \\
I & =T-E=0
\end{aligned}
$$

Example 4

$$
\begin{aligned}
& T=m+R-2 j=7+3-2 \times 5=0 \\
& E=R-3=3-3=0 \\
& I=T-E=0
\end{aligned}
$$

Example 5

$$
\begin{aligned}
& T=m+R-2 j=6+4-2 \times 4=2 \\
& E=R-3=4-3=1 \\
& I=T-E=1
\end{aligned}
$$

Example 6

$$
\begin{aligned}
& T=m+R-2 j=11+3-2 \times 6=2 \\
& E=R-3=3-3=0 \\
& \quad I=T-E=2
\end{aligned}
$$

-Wall or roof attached pin jointed plane truss (Exception

 to the above general case):- Internal indeterminacy $I=m-2 j$
- External indeterminacy $=0$ (Since, once the member forces are determined reactions are determinable)

$T=I=m-2 j$
$=6-2 \times 3=0$

Examnle 2

$$
\begin{aligned}
& T=I=m-2 j \\
& =7-2 \times 3=1
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& T=I=m-2 j \\
& =5-2 \times 1=3
\end{aligned}
$$

- Space Truss:
- External indeterminacy $=$ Reaction components number of equations available $\quad E=R-6$
- Total (Internal and external) indeterminacy $T=m+R-3 j$

Example 1

- Total (Internal and external) indeterminacy

$$
\begin{gathered}
T=m+R-3 j \\
\therefore T=12+9-3 \times 6=3 \\
E=R-6=9-6=3
\end{gathered}
$$

Actions and displacements

-Actions:

- External actions (Force or couple or combinations) and
- Internal actions (Internal stress resultants - BM, SF, axial forces, twisting moments)

(b)
- Displacements: A translation or rotation at some point
-Displacement corresponding to an action: Need not be caused by that action

- Notatinnc for artinnc and dicnlaromonte.

(a)

(c)

1 \%

Equilibrium

-Resultant of all actions (a force, a couple or both) must vanish for static equilibrium
-Resultant force vector must be zero; resultant moment vector must be zero

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

- For 2-dimensional problems (forces are in one plane and couples have vectors normal to the plane),

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{z}=0
$$

- In stiffness method, the basic equations to be solved are the equilibrium conditions at the joints

Compatibility

-Compatibility conditions: Conditions of continuity of displacements throughout the structure
-Eg: at a rigid connection between two members, the displacements (translations and rotations) of both members must be the same

- In flexibility method, the basic equations to be solved are the compatibility conditions

Action and displacement equations

-Spring: $D=F A \quad A=S D$
-Stiffness $\quad S=F^{-1}$
-Flexibility: $\quad F=S^{-1}$
-The above equations apply to any linearly elastic structure
-Example 1:
Flexibility and stiffness of a beam subjected to a single load

(b)

(c)

Flexibility $\quad F=\frac{L^{3}}{48 E I}$
Stiffness $S=\frac{48 E I}{L^{3}}$

- Example 2:

Flexibility coefficients of a beam subjected to several loads

Actions on the beam

(b)

Deformations corresponding to actions

(d)

(e)

Unit load applied corresponding to each action, separately

$$
D_{1}=D_{11}+D_{12}+D_{13} \quad D_{2}=D_{21}+D_{22}+D_{23} \quad D_{3}=D_{31}+D_{32}+D_{33}
$$

$$
\begin{aligned}
& D_{1}=F_{11} A_{1}+F_{12} A_{2}+F_{13} A_{3} \\
& D_{2}=F_{21} A_{1}+F_{22} A_{2}+F_{23} A_{3} \\
& D_{3}=F_{31} A_{1}+F_{32} A_{2}+F_{33} A_{3}
\end{aligned}
$$

F_{11}, F_{12}, F_{13} etc. \rightarrow Flexibility coefficients
-Flexibility coefficient F_{12} : Displacement corresponding to A_{1} caused by a unit value of A_{2}.

- In general, flexibility coefficient $F_{i j}$ is the displacement corresponding to A_{i} caused by a unit value of A_{j}.
-Example 3:
Stiffness coefficients of a beam subjected to several loads

(a)
--- Actions on the beam

(b)

Deformations corresponding to actions

Unit displacement applied corresponding to each DOF, separately, keeping all other displacements zero

$$
\begin{aligned}
& A_{1}=A_{11}+A_{12}+A_{13} \\
& A_{1}=S_{11} D_{1}+S_{12} D_{2}+S_{13} D_{3} \\
& A_{2}=S_{21} D_{1}+S_{22} D_{2}+S_{23} D_{3} \\
& A_{3}=S_{31} D_{1}+S_{32} D_{2}+S_{33} D_{3}
\end{aligned}
$$

S_{11}, S_{12}, S_{13} etc. \rightarrow Stiffness coefficients:

- Stiffness coefficient S_{12} : Action corresponding to $\boldsymbol{D}_{\mathbf{1}}$ caused by a unit value of $\boldsymbol{D}_{\mathbf{2}}$.
-In general, stiffness coefficient $S_{i j}$ is the action corresponding to $\boldsymbol{D}_{\boldsymbol{i}}$ caused by a unit value of \boldsymbol{D}_{j}.
- Examole 4: Flexibilitv and stiffness coefficients of a beam

(a)

Flexibility coefficients:

Stiffness coefficients:

- Examole 5: Flexibilitv and stiffness coefficients of a truss

Flexibility and stiffness matrices

1. Flexibility matrix
oThe compatibility equations are:

$$
\begin{aligned}
& D_{1}=F_{11} A_{1}+F_{12} A_{2}+F_{13} A_{3}+\ldots+F_{1 n} A_{n} \\
& D_{2}=F_{21} A_{1}+F_{22} A_{2}+F_{23} A_{3}+\ldots+F_{2 n} A_{n}
\end{aligned}
$$

$$
D_{n}=F_{n 1} A_{1}+F_{n 2} A_{2}+F_{n 3} A_{3}+\ldots+F_{n n} A_{n}
$$

oIn matrix form,

$$
\begin{gathered}
\boldsymbol{D}=\boldsymbol{F A} \\
\{D\}=\lceil F\rceil\{A\}
\end{gathered}
$$

$\{D\}$ Displacement matrix (vector),
[F] Flexibility matrix,
$\{A\}$ Action matrix (vector)
$F_{i j}$ are the flexibility coefficients

2. Stiffness matrix

oThe equilibrium equations are:

$$
\begin{aligned}
& A_{1}=S_{11} D_{1}+S_{12} D_{2}+S_{13} D_{3}+\ldots+S_{1 n} D_{n} \\
& A_{2}=S_{21} D_{1}+S_{22} D_{2}+S_{23} D_{3}+\ldots+S_{2 n} D_{n} \\
& \ldots \\
& A_{n}=S_{n 1} D_{1}+S_{n 2} D_{2}+S_{n 3} D_{3}+\ldots+S_{n n} D_{n}
\end{aligned}
$$

oIn matrix form,

$$
\begin{array}{cl}
\boldsymbol{A}=\boldsymbol{S D} & \{A\} \\
& \text { Action matrix (vector) } \\
\{A\}=[S]\{D\} & \begin{aligned}
{[S] } & \text { Stiffness matrix, } \\
\{D\} & \text { Displacement matrix (vector) }
\end{aligned}
\end{array}
$$

$S_{i j}$ are the stiffness coefficients

- Relationship between flexibility and stiffness matrices

$$
\begin{gathered}
A=S \quad D=S \quad F A \\
\therefore F=S^{-1}
\end{gathered}
$$

-Example: Cantilever element

$$
S_{11}=\frac{17 F I}{L^{3}} ; \quad S_{21}=S_{12}=\frac{-6 F I}{L^{2}} ; \quad S_{22}=\frac{4 F I}{L}
$$

$$
A_{1}=\frac{12 E I}{L^{3}} D_{1}-\frac{6 E I}{L^{2}} D_{2}
$$

$$
A_{2}=\frac{-6 E I}{L^{2}} D_{1}+\frac{4 E I}{L} D_{2}
$$

$$
\leftrightarrow A \leftrightarrow=\begin{array}{ll}
\frac{r 2 E I}{L^{3}} & \frac{-6 E I \lambda}{L^{2}} \\
-\frac{-6 E I}{L^{2}} & \frac{4 E I}{L} \\
A_{2} \uparrow
\end{array}
$$

[s
-Flexibility matrix and stiffness matrix are relating actions and corresponding displacements

$$
\begin{aligned}
& \text { The flexibility matrix } \quad[F] \text { obtained for a structure analysed by } \\
& \text { flexibility method may not be the inverse of the stiffness matrix } \\
& \text {] } S \\
& \text { obtained for the same structure analysed by stiffness method } \\
& \text { because different sets of actions and corresponding displacements } \\
& \text { may be utilized in the two methods. }
\end{aligned}
$$

Eauivalent ioint loads

- Analysis by flexibility and stiffness methods requires that loads must act only at joints.
-Thus, loads acting on the members (i.e., loads that are not acting at the joints) must be replaced by equivalent loads acting at the joints.
-The loads that are determined from loads on the members are called equivalent joint loads.
- Equivalent joint loads are added to the actual joint loads to get combined joint loads.
- Analysis carried out for combined joint loads
- Combined joint loads can be evaluated in such a manner that the resulting displacements of the structure are same as the displacements produced by the actual loads
-This is achieved thru the use of fixed end actions to get equivalent joint loads
- Framnla 1

Beam with actual applied loads

Applied loads other than joint loads (To be converted to equivalent ioint loads)

Member fixed end actions
(Due to applied loads other than joint loads)

Fixed end actions for the entire beam

Equivalent joint loads (Negative of fixed end actions)

Combined \bar{d} joint $\overline{\text { loads }}$
(Applied joint loads + Equivalent joint loads)

Fixed end actions

$$
\frac{M b}{l^{2}}(2 a-b) \text { (}
$$

- Example 2

Fixed end actions

Equivalent joint loads (Opposite of fixed end actions)

Combined joint loads are same as equivalent joint loads here, since there are no loads applied to joints directly

- Superposition of combined joint loads and restraint actions gives the actual loads.
-Superposition of joint displacements due to the combined joint loads and restraint actions gives the displacements produced by the actual loads.
-But joint displacements due to restraint actions are zero. Thus, joint displacements due to the combined joint loads give the displacements produced by the actual loads
- But member end actions due to actual loads are obtained by superimposing member end actions due to restraint actions and combined joint loads

Summarv

Matrix analysis of structures

- Definition of flexibility and stiffness influence coefficients development of flexibility matrices by physical approach \& energy principle.

