
Introduction to C

Programming

Introduction

History of C

 Evolved from two previous languages

– BCPL , B

 BCPL (Basic Combined Programming Language) used

for writing OS & compilers

 B used for creating early versions of UNIX OS

 Both were “typeless” languages

 C language evolved from B (Dennis Ritchie – Bell labs)

** Typeless – no datatypes. Every data item occupied 1 word in memory.

History of C

 Hardware independent

 Programs portable to most computers

 Dialects of C

– Common C

– ANSI C

• ANSI/ ISO 9899: 1990

• Called American National Standards Institute ANSI C

 Case-sensitive

C Standard Library

 Two parts to learning the “C” world

– Learn C itself

– Take advantage of rich collection of existing functions

called C Standard Library

 Avoid reinventing the wheel

 SW reusability

Basics of C Environment

 C systems consist of 3 parts

– Environment

– Language

– C Standard Library

 Development environment has 6 phases

– Edit

– Pre-processor

– Compile

– Link

– Load

– Execute

Simple C Program

/* A first C Program*/

#include <stdio.h>

void main()

{

 printf("Hello World \n");

}

Simple C Program

 Line 1: #include <stdio.h>

 As part of compilation, the C compiler runs a program

called the C preprocessor. The preprocessor is able to

add and remove code from your source file.

 In this case, the directive #include tells the

preprocessor to include code from the file stdio.h.

 This file contains declarations for functions that the

program needs to use. A declaration for the printf
function is in this file.

Simple C Program

 Line 2: void main()

 This statement declares the main function.

 A C program can contain many functions but must

always have one main function.

 A function is a self-contained module of code that can

accomplish some task.

 Functions are examined later.

 The "void" specifies the return type of main. In this case,

nothing is returned to the operating system.

Simple C Program

 Line 3: {

 This opening bracket denotes the start of the program.

Simple C Program

 Line 4: printf("Hello World From About\n");

 Printf is a function from a standard C library that is used

to print strings to the standard output, normally your

screen.

 The compiler links code from these standard libraries to

the code you have written to produce the final

executable.

 The "\n" is a special format modifier that tells the printf

to put a line feed at the end of the line.

 If there were another printf in this program, its string

would print on the next line.

Simple C Program

 Line 5: }

 This closing bracket denotes the end of the program.

Escape Sequence

 \n new line

 \t tab

 \r carriage return

 \a alert

 \\ backslash

 \” double quote

Memory concepts

 Every variable has a name, type and value

 Variable names correspond to locations in computer

memory

 New value over-writes the previous value– “Destructive

read-in”

 Value reading called “Non-destructive read-out”

Arithmetic in C

C operation Algebraic C

Addition(+) f+7 f+7

Subtraction (-) p-c p-c

Multiplication(*) bm b*m

Division(/) x/y, x , x y x/y

Modulus(%) r mod s r%s

Precedence order

 Highest to lowest

• ()

• *, /, %

• +, -

Example

Algebra:

 z = pr%q+w/x-y

C:

 z = p * r % q + w / x – y ;

Precedence:

 1 2 4 3 5

Example

Algebra:

 a(b+c)+ c(d+e)

C:

 a * (b + c) + c * (d + e) ;

Precedence:

 3 1 5 4 2

Decision Making

 Checking falsity or truth of a statement

 Equality operators have lower precedence than

relational operators

 Relational operators have same precedence

 Both associate from left to right

Decision Making

 Equality operators

• ==

• !=

 Relational operators

• <

• >

• <=

• >=

Assignment operators

 =

 +=

 -=

 *=

 /=

 %=

Increment/ decrement operators

 ++ ++a

 ++ a++

 -- --a

 -- a--

Increment/ decrement operators

main()

{

 int c;

 c = 5;

 printf(“%d\n”, c);

 printf(“%d\n”, c++);

 printf(“%d\n\n”, c);

 c = 5;

 printf(“%d\n”, c);

 printf(“%d\n”, ++c);

 printf(“%d\n”, c);

 return 0;

}

5

5

6

5

6

6

Thank You

 Thank You

