Introduction to C
Programming

Introduction

History of C

Evolved from two previous languages
— BCPL , B

BCPL (Basic Combined Programming Language) used
for writing OS & compilers

B used for creating early versions of UNIX OS
Both were “typeless” languages
C language evolved from B (Dennis Ritchie — Bell labs)

** Typeless — no datatypes. Every data item occupied 1 word in memory.

History of C

Hardware independent
Programs portable to most computers
Dialects of C

— Common C
— ANSIC
« ANSI/ ISO 9899: 1990
» Called American National Standards Institute ANSI C

Case-sensitive

C Standard Library

m Two parts to learning the “C” world
— Learn C itself

— Take advantage of rich collection of existing functions
called C Standard Library

= Avoid reinventing the wheel
s SW reusability

Basics of C Environment

m C systems consist of 3 parts
— Environment
— Language
— C Standard Library
m Development environment has 6 phases
— Edit
— Pre-processor
— Compile
— Link
— Load
— Execute

Simple C Program

I* A first C Program®/

#include <stdio.h>

void main()

{
printf("Hello World \n");

Simple C Program

Line 1: #include <stdio.h>

As part of compilation, the C compiler runs a program
called the C preprocessor. The preprocessor is able to
add and remove code from your source file.

In this case, the directive #include tells the
preprocessor to include code from the file stdio.h.

This file contains declarations for functions that the

program needs to use. A declaration for the printf
function is in this file.

Simple C Program

Line 2: void main()

This statement declares the main function.

A C program can contain many functions but must
always have one main function.

A function is a self-contained module of code that can
accomplish some task.

Functions are examined later.

The "void" specifies the return type of main. In this case,
nothing is returned to the operating system.

Simple C Program

m Line 3: {

m This opening bracket denotes the start of the program.

Simple C Program

Line 4: printf("Hello World From About\n");

Printf is a function from a standard C library that is used
to print strings to the standard output, normally your
screen.

The compiler links code from these standard libraries to

the code you have written to produce the final
executable.

The "\n" is a special format modifier that tells the printf
to put a line feed at the end of the line.

If there were another printf in this program, its string
would print on the next line.

Simple C Program

= Line 5:}
O This closing bracket denotes the end of the program.

m\r

Escape Sequence

new line

tab

carriage return
alert
backslash
double quote

Memory concepts

Every variable has a name, type and value

Variable names correspond to locations in computer
memory

New value over-writes the previous value— “Destructive
read-in”
Value reading called “Non-destructive read-out’

Arithmetic in C

C operation Algebraic C
Addition(+) f+7 f+7
Subtraction (-) p-C p-C
Multiplication(*) bm b*m
Division(/) Xy, X, X Yy X/y

Modulus(%) rmod s r%s

Precedence order

s Highest to lowest
* ()
«*. 1, %

o+’_

Example

e S — VR E—
Algebra:
Z = pr%q+w/x-y
C:
z=p*r%q+w/ x-y,;
Precedence:

Example

Algebra:

a(b+c)+ c(d+e)
C:

a*(b+c)+c*(d+e);
Precedence:

Decision Making

Checking falsity or truth of a statement

Equality operators have lower precedence than
relational operators

Relational operators have same precedence
Both associate from left to right

Decision Making

m Equality operators

m Relational operators

-

Precedence level

Operator Description Associativity
() Function call] »
L3 Array subscript 1 Left to Right
> Arrow operator '

e Dot operator
+ Unary plus
- Unary minus
++ Increment
- - Decrement
! Logical NOT _ 2 Right to Left
~ Onmne’s complément
* ‘Indirection ;
& : - Address
(datatype) Type cast
e sizeof Size in bytes

' - Multiplication
/ Division 3 Left to Right
% Modulus
+ Addition 4 Left to Right
- _Subtraction _ —
<< Left shift 5 Left to Right
>> Right shift '
< Less than
<= Less than or equal to 6 Left to Right
> Greater than : '
>= Greater than or equal to o — - -
S Equal to g : 7 Left to Right
1= Not equal to
& Bitwise AND 8 Left to Right
a Bitwise XOR 9 Left to Right

I Bitwise OR 10 Left to Right ~
& Logical AND 11 Left to Right
i1 Logical OR 12 Left to Right
?.:. Conditional operator 13 Right to Left

*= = U= _ .
= = - Assignment operators ‘14 Right to Left

E= "= |= ' '

<<= >>= -

Comma operator 15 Left to Right

Assignment operators

Increment/ decrement operators

m ++ ++3
m ++ a++
m -- --d

Increment/ decrement operators

main ()
{
int c;
c = 5;
printf (“$d\n”, c); g
printf (“sd\n”, c++); 6

printf (“$d\n\n”, c);

cC = O5;

printf (“$d\n”, c); 5
printf (“$d\n”, ++c);
printf (“%d\n”, c);

o

return 0;

J

Thank You

m [hank You

