
Introduction to C

Programming

Introduction

History of C

 Evolved from two previous languages

– BCPL , B

 BCPL (Basic Combined Programming Language) used

for writing OS & compilers

 B used for creating early versions of UNIX OS

 Both were “typeless” languages

 C language evolved from B (Dennis Ritchie – Bell labs)

** Typeless – no datatypes. Every data item occupied 1 word in memory.

History of C

 Hardware independent

 Programs portable to most computers

 Dialects of C

– Common C

– ANSI C

• ANSI/ ISO 9899: 1990

• Called American National Standards Institute ANSI C

 Case-sensitive

C Standard Library

 Two parts to learning the “C” world

– Learn C itself

– Take advantage of rich collection of existing functions

called C Standard Library

 Avoid reinventing the wheel

 SW reusability

Basics of C Environment

 C systems consist of 3 parts

– Environment

– Language

– C Standard Library

 Development environment has 6 phases

– Edit

– Pre-processor

– Compile

– Link

– Load

– Execute

Simple C Program

/* A first C Program*/

#include <stdio.h>

void main()

{

 printf("Hello World \n");

}

Simple C Program

 Line 1: #include <stdio.h>

 As part of compilation, the C compiler runs a program

called the C preprocessor. The preprocessor is able to

add and remove code from your source file.

 In this case, the directive #include tells the

preprocessor to include code from the file stdio.h.

 This file contains declarations for functions that the

program needs to use. A declaration for the printf
function is in this file.

Simple C Program

 Line 2: void main()

 This statement declares the main function.

 A C program can contain many functions but must

always have one main function.

 A function is a self-contained module of code that can

accomplish some task.

 Functions are examined later.

 The "void" specifies the return type of main. In this case,

nothing is returned to the operating system.

Simple C Program

 Line 3: {

 This opening bracket denotes the start of the program.

Simple C Program

 Line 4: printf("Hello World From About\n");

 Printf is a function from a standard C library that is used

to print strings to the standard output, normally your

screen.

 The compiler links code from these standard libraries to

the code you have written to produce the final

executable.

 The "\n" is a special format modifier that tells the printf

to put a line feed at the end of the line.

 If there were another printf in this program, its string

would print on the next line.

Simple C Program

 Line 5: }

 This closing bracket denotes the end of the program.

Escape Sequence

 \n new line

 \t tab

 \r carriage return

 \a alert

 \\ backslash

 \” double quote

Memory concepts

 Every variable has a name, type and value

 Variable names correspond to locations in computer

memory

 New value over-writes the previous value– “Destructive

read-in”

 Value reading called “Non-destructive read-out”

Arithmetic in C

C operation Algebraic C

Addition(+) f+7 f+7

Subtraction (-) p-c p-c

Multiplication(*) bm b*m

Division(/) x/y, x , x y x/y

Modulus(%) r mod s r%s

Precedence order

 Highest to lowest

• ()

• *, /, %

• +, -

Example

Algebra:

 z = pr%q+w/x-y

C:

 z = p * r % q + w / x – y ;

Precedence:

 1 2 4 3 5

Example

Algebra:

 a(b+c)+ c(d+e)

C:

 a * (b + c) + c * (d + e) ;

Precedence:

 3 1 5 4 2

Decision Making

 Checking falsity or truth of a statement

 Equality operators have lower precedence than

relational operators

 Relational operators have same precedence

 Both associate from left to right

Decision Making

 Equality operators

• ==

• !=

 Relational operators

• <

• >

• <=

• >=

Assignment operators

 =

 +=

 -=

 *=

 /=

 %=

Increment/ decrement operators

 ++ ++a

 ++ a++

 -- --a

 -- a--

Increment/ decrement operators

main()

{

 int c;

 c = 5;

 printf(“%d\n”, c);

 printf(“%d\n”, c++);

 printf(“%d\n\n”, c);

 c = 5;

 printf(“%d\n”, c);

 printf(“%d\n”, ++c);

 printf(“%d\n”, c);

 return 0;

}

5

5

6

5

6

6

Thank You

 Thank You

