
 Lectures on Numerical Methods 1

Tokens in C Tokens in C

Keywords
These are reserved words of the C language. For example int,

float, if, else, for, while etc.

Identifiers
An Identifier is a sequence of letters and digits, but must start with a

letter. Underscore (_) is treated as a letter. Identifiers are case

sensitive. Identifiers are used to name variables, functions etc.

Valid: Root, _getchar, __sin, x1, x2, x3, x_1, If

Invalid: 324, short, price$, My Name

Constants
Constants like 13, ‘a’, 1.3e-5 etc.

 Lectures on Numerical Methods 2

Tokens in C Tokens in C

String Literals
A sequence of characters enclosed in double quotes as “…”. For

example “13” is a string literal and not number 13. ‘a’ and “a” are

different.

Operators
Arithmetic operators like +, -, *, / ,% etc.

Logical operators like ||, &&, ! etc. and so on.

White Spaces
Spaces, new lines, tabs, comments (A sequence of characters

enclosed in /* and */) etc. These are used to separate the adjacent

identifiers, kewords and constants.

 Lectures on Numerical Methods 3

Basic Data Types Basic Data Types

Integral Types
Integers are stored in various sizes. They can be signed or unsigned.

Example

Suppose an integer is represented by a byte (8 bits). Leftmost bit is sign

bit. If the sign bit is 0, the number is treated as positive.

Bit pattern 01001011 = 75 (decimal).

The largest positive number is 01111111 = 27 – 1 = 127.

Negative numbers are stored as two’s complement or as one’s

complement.

-75 = 10110100 (one’s complement).

-75 = 10110101 (two’s complement).

 Lectures on Numerical Methods 4

Basic Data Types Basic Data Types

Integral Types
 char Stored as 8 bits. Unsigned 0 to 255.

 Signed -128 to 127.

 short int Stored as 16 bits. Unsigned 0 to 65535.

 Signed -32768 to 32767.

 int Same as either short or long int.

 long int Stored as 32 bits. Unsigned 0 to

4294967295.

 Signed -2147483648 to 2147483647

 Lectures on Numerical Methods 5

Basic Data Types Basic Data Types

Floating Point Numbers
Floating point numbers are rational numbers. Always signed numbers.

float Approximate precision of 6 decimal digits .

• Typically stored in 4 bytes with 24 bits of signed mantissa and 8

bits of signed exponent.

double Approximate precision of 14 decimal digits.

• Typically stored in 8 bytes with 56 bits of signed mantissa and 8

bits of signed exponent.

One should check the file limits.h to what is implemented on a particular

machine.

 Lectures on Numerical Methods 6

Constants Constants

Numerical Constants
Constants like 12, 253 are stored as int type. No decimal

point.

12L or 12l are stored as long int.

12U or 12u are stored as unsigned int.

12UL or 12ul are stored as unsigned long int.

Numbers with a decimal point (12.34) are stored as double.

Numbers with exponent (12e-3 = 12 x 10-3) are stored as double.

12.34f or 1.234e1f are stored as float.

These are not valid constants:

 25,000 7.1e 4 $200 2.3e-3.4 etc.

 Lectures on Numerical Methods 7

Constants Constants

Character and string constants
‘c’ , a single character in single quotes are stored as char.

Some special character are represented as two characters in single

quotes.
‘\n’ = newline, ‘\t’= tab, ‘\\’ = backlash, ‘\”’ = double quotes.

Char constants also can be written in terms of their ASCII code.
‘\060’ = ‘0’ (Decimal code is 48).

A sequence of characters enclosed in double quotes is called a string

constant or string literal. For example
“Charu”

“A”

“3/9”

“x = 5”

 Lectures on Numerical Methods 8

Variables Variables

Naming a Variable
Must be a valid identifier.

Must not be a keyword

Names are case sensitive.

Variables are identified by only first 32 characters.

Library commonly uses names beginning with _.

Naming Styles: Uppercase style and Underscore style

lowerLimit lower_limit

incomeTax income_tax

 Lectures on Numerical Methods 9

Declarations Declarations

Declaring a Variable
Each variable used must be declared.

A form of a declaration statement is

 data-type var1, var2,…;

Declaration announces the data type of a variable and allocates

appropriate memory location. No initial value (like 0 for integers) should

be assumed.

It is possible to assign an initial value to a variable in the declaration

itself.

 data-type var = expression;

Examples

 int sum = 0;

 char newLine = ‘\n’;

 float epsilon = 1.0e-6;

 Lectures on Numerical Methods 10

Global and Local Variables Global and Local Variables

Global Variables
These variables are

declared outside all

functions.

Life time of a global

variable is the entire

execution period of the

program.

Can be accessed by any

function defined below the

declaration, in a file.

/* Compute Area and Perimeter of a

circle */

#include <stdio.h>

float pi = 3.14159; /* Global */

main() {

 float rad; /* Local */

 printf(“Enter the radius “);

 scanf(“%f” , &rad);

 if (rad > 0.0) {

 float area = pi * rad * rad;

 float peri = 2 * pi * rad;

 printf(“Area = %f\n” , area);

 printf(“Peri = %f\n” , peri);

 }

 else

 printf(“Negative radius\n”);

 printf(“Area = %f\n” , area);

}

/* Compute Area and Perimeter of a

circle */

#include <stdio.h>

float pi = 3.14159; /* Global */

main() {

 float rad; /* Local */

 printf(“Enter the radius “);

 scanf(“%f” , &rad);

 if (rad > 0.0) {

 float area = pi * rad * rad;

 float peri = 2 * pi * rad;

 printf(“Area = %f\n” , area);

 printf(“Peri = %f\n” , peri);

 }

 else

 printf(“Negative radius\n”);

 printf(“Area = %f\n” , area);

}

 Lectures on Numerical Methods 11

Global and Local Variables Global and Local Variables

Local Variables
These variables are

declared inside some

functions.

Life time of a local

variable is the entire

execution period of the

function in which it is

defined.

Cannot be accessed by any

other function.

In general variables

declared inside a block

are accessible only in

that block.

/* Compute Area and Perimeter of a

circle */

#include <stdio.h>

float pi = 3.14159; /* Global */

main() {

 float rad; /* Local */

 printf(“Enter the radius “);

 scanf(“%f” , &rad);

 if (rad > 0.0) {

 float area = pi * rad * rad;

 float peri = 2 * pi * rad;

 printf(“Area = %f\n” , area);

 printf(“Peri = %f\n” , peri);

 }

 else

 printf(“Negative radius\n”);

 printf(“Area = %f\n” , area);

}

/* Compute Area and Perimeter of a

circle */

#include <stdio.h>

float pi = 3.14159; /* Global */

main() {

 float rad; /* Local */

 printf(“Enter the radius “);

 scanf(“%f” , &rad);

 if (rad > 0.0) {

 float area = pi * rad * rad;

 float peri = 2 * pi * rad;

 printf(“Area = %f\n” , area);

 printf(“Peri = %f\n” , peri);

 }

 else

 printf(“Negative radius\n”);

 printf(“Area = %f\n” , area);

}

 Lectures on Numerical Methods 12

Operators Operators

Arithmetic Operators
+, - , *, / and the modulus operator %.

+ and – have the same precedence and associate left to right.

 3 – 5 + 7 = (3 – 5) + 7  3 – (5 + 7)

 3 + 7 – 5 + 2 = ((3 + 7) – 5) + 2

*, /, % have the same precedence and associate left to right.

The +, - group has lower precendence than the *, / % group.

 3 – 5 * 7 / 8 + 6 / 2

 3 – 35 / 8 + 6 / 2

 3 – 4.375 + 6 / 2

 3 – 4.375 + 3

 -1.375 + 3

 1.625

 Lectures on Numerical Methods 13

Operators Operators

Arithmetic Operators
% is a modulus operator. x % y results in the remainder when x is

divided by y and is zero when x is divisible by y.

Cannot be applied to float or double variables.

Example

 if (num % 2 == 0)

printf(“%d is an even number\n”, num)’;

 else

printf(“%d is an odd number\n”, num);

 Lectures on Numerical Methods 14

Type Conversions Type Conversions

The operands of a binary operator must have a the same type and the

result is also of the same type.

 Integer division:

 c = (9 / 5)*(f - 32)

 The operands of the division are both int and hence the result also would

be int. For correct results, one may write

 c = (9.0 / 5.0)*(f - 32)

In case the two operands of a binary operator are different, but

compatible, then they are converted to the same type by the compiler.

The mechanism (set of rules) is called Automatic Type Casting.

 c = (9.0 / 5)*(f - 32)

It is possible to force a conversion of an operand. This is called Explicit

Type casting.

 c = ((float) 9 / 5)*(f - 32)

 Lectures on Numerical Methods 15

Automatic Type Casting Automatic Type Casting

1. char and short operands are converted to int

2. Lower data types are converted to the higher data

types and result is of higher type.

3. The conversions between unsigned and signed types

may not yield intuitive results.

4. Example
 float f; double d; long l;

 int i; short s;

 d + f f will be converted to double

 i / s s will be converted to int

 l / i i is converted to long; long result

Hierarchy

Double

float

long

Int

Short and

char

 Lectures on Numerical Methods 16

Explicit Type Casting Explicit Type Casting

The general form of a type casting operator is

(type-name) expression

It is generally a good practice to use explicit casts than to rely on

automatic type conversions.

Example

 C = (float)9 / 5 * (f – 32)

float to int conversion causes truncation of fractional part

double to float conversion causes rounding of digits

long int to int causes dropping of the higher order bits.

 Lectures on Numerical Methods 17

Precedence and Order of evaluation Precedence and Order of evaluation

 Lectures on Numerical Methods 18

Precedence and Order of evaluation Precedence and Order of evaluation

 Lectures on Numerical Methods 19

Operators Operators

Relational Operators
<, <=, > >=, ==, != are the relational operators. The expression

 operand1 relational-operator operand2

 takes a value of 1(int) if the relationship is true and 0(int) if relationship is

false.

Example

 int a = 25, b = 30, c, d;

 c = a < b;

 d = a > b;

 value of c will be 1 and that of d will be 0.

 Lectures on Numerical Methods 20

Operators Operators

Logical Operators
&&, || and ! are the three logical operators.

expr1 && expr2 has a value 1 if expr1 and expr2 both are

nonzero.

expr1 || expr2 has a value 1 if expr1 and expr2 both are nonzero.

!expr1 has a value 1 if expr1 is zero else 0.

Example

if (marks >= 40 && attendance >= 75) grade = ‘P’

If (marks < 40 || attendance < 75) grade = ‘N’

 Lectures on Numerical Methods 21

Operators Operators

Assignment operators
The general form of an assignment operator is

v op= exp

Where v is a variable and op is a binary arithmetic operator. This

statement is equivalent to

v = v op (exp)

a = a + b can be written as a += b

a = a * b can be written as a *= b

a = a / b can be written as a /= b

a = a - b can be written as a -= b

 Lectures on Numerical Methods 22

Operators Operators

Increment and Decrement Operators
The operators ++ and –- are called increment and decrement operators.

a++ and ++a are equivalent to a += 1.

a-- and --a are equivalent to a -= 1.

++a op b is equivalent to a ++; a op b;

a++ op b is equivalent to a op b; a++;

Example

 Let b = 10 then

 (++b)+b+b = 33

 b+(++b)+b = 33

 b+b+(++b) = 31

 b+b*(++b) = 132

 Lectures on Numerical Methods 23

Floating Point Arithmetic Floating Point Arithmetic

Representation
All floating point numbers are stored as

such that d1 is nonzero. B is the base. p is the precision or number of

significant digits. e is the exponent. All these put together have finite

number of bits (usually 32 or 64 bits) of storage.

Example

Assume B = 10 and p = 3.

23.7 = +0.237E2

23.74 = +0.237E2

37000 = +0.370E5

37028 = +0.370E5

-0.000124 = -0.124E-4

e

p Bddd  21.0

 Lectures on Numerical Methods 24

Floating Point Arithmetic Floating Point Arithmetic

Representation
Sk = { x | Bk-1 <= x < Bk }. Number of elements in each Sk is same. In the

previous example it is 900.

Gap between seuccessive numbers of Sk is Bk-p.

B1-p is called machine epsilon. It is the gap between 1 and next

representable number.

Underflow and Overflow occur when number cannot be represented

because it is too small or too big.

Two floating points are added by aligning decimal points.

Floating point arithmetic is not associative and distributive.

