
POINTERS

The & and * operators.
Consider the declaration,

 int i = 3;

 i location name

 value at location

 6485 location no.(address)

This declaration tells the C compiler to:

(a)Reserve space in memory to hold the integer value.

(b)Associate the name I with this memory location.

(c)Store the value 3 at this location.

3 3

 main()

{

 int i=3;

 printf(“\nAddress of i=%u”,&i);

 printf(“\nValue of i=%u”,i);

}

Output:

Address of i = 6485

Value of i = 3

The ‘&’ operator used in this statement in C’s ‘address of’ operator.

The &i returns address of the variable i , which in this case happens to be 6485

main()

{

 int i=3;

 printf(“\nAddress of i=%u”,&i);

 printf(“\nValue of i=%u”,i);

 printf(“\nValue of i=%u”,*(&i));

}

Output:

Address of i = 6485

Value of i = 3

Value of i = 3

 i j

 6485 3276

 int i;

 int *j;

3 3 6485 6485

main()

{

 int i=3;

 int *j;

 j=&i;

 printf(“\nAddress of i=%u”,&i);

 printf(“\nAddress of i=%u”, j);

 printf(“\n Address of j=%u”,&j);

 printf(“\n Value of j=%d”, j);

 printf(“\nValue of i=%d”, i);

 printf(“\nValue of i=%d”,*(&i));

 printf(“\nValue of i=%d”, *j);

}

Output:

Address of i= 6485

Address of i= 6485

 Address of j= 3276

Value of j= 6485

Value of i= 3

Value of i= 3

Value of i= 3

 i j k

 6485 3276 7234

 int i;

 int *j;

 int **k;

3 3 6485 6485 3276 3276

main()

{

 int i=3;

 int *j;

 j=&i;

 printf(“\nAddress of i=%u”,&i);

 printf(“\nAddress of i=%u”, j);

 printf(“\n Address of i=%u”,*k);

 printf(“\n Address of j=%u”, &j);

 printf(“\nAddress of j=%u”, k);

 printf(“\n Address of k=%u”,(&k));

 printf(“\nValue of j=%u”, j);

 printf(“\nValue of k=%u”, k);

 printf(“\n Value of i=%d”,i);

 printf(“\nValue of i=%d”,*(&i));

 printf(“\nValue of i=%d”, *j);

 printf(“\nValue of i=%d”, **k);

}

Address of i= 6485

Address of i= 6485

Address of i= 6485

 Address of j= 3276

Address of j= 3276

Address of k= 7234

Value of j= 6485

Value of k= 3276

Value of i= 3

Value of i= 3

Value of i= 3

Value of i= 3

 c I a

1004 2008 2009 7006 7007 7008 7009

 cc ii aa

 1962 7602 9118

65 65 Bin eq Bin eq of 54 of 54 Binary Binary Equivalent Equivalent of of 3.14 3.14

1004 1004 2008 2008 7006 7006

 main()

 {

 char c, *cc;

 int i, *ii ;

 float a, *aa ;

 c=‘A’ ;

 i=54;

 a= 3.14;

 cc=&c;

 ii =&i;

 aa= &a ;

 printf(“\nAddress of cc=%u”,cc);

 printf(“\nAddress of ii=%u”, ii);

 printf(“\n Address of aa=%u”, aa);

 printf(“\n Value of c=%c”, *cc);

 printf(“\nValue of i=%d”, *ii);

 printf(“\n Value of a=%f”,*aa);

}

Output

Address of cc= 1004

Address of ii= 2008

Address of aa=7006

Value of c= A

Value of i=54

Value of a=3.14

 main()

 {

 int *p,i ;

 p=&i;

 *p=10;

 printf(“%p%p”,p, &i);

 printf(“\n %d%d\n”,*p,i);

 return 0;

 }

 Main Memory
Address Memory variable

0023FF66 p

0023FF70 i

Soon after declaration

Address Memory variable

0023FF66 0023FF70 p

0023FF70 i

After executing p=&i

Address Memory variable

0023FF66 0023FF70 p

0023FF70 10 i

After executing *p=10

 main()

{

 int i=3,*x;

 float j=1.5,*y;

 char k=‘c’,*z;

 printf(“\n Value of i = %d”,i);

 printf(“\n Value of j = %d”,j);

 printf(“\n Value of k = %d”,k);

 x= &i;

 y= &j;

 z= &k;

 printf(“\n Original Value of x = %d”,x);

 printf(“\n Original Value of y= %d”,y);

 printf(“\n Original Value of z= %d”,z);

 x++;

 y++;

 z++;

 printf(“\n New Value of x = %d”,x);

 printf(“\n New Value of y= %d”,y);

 printf(“\n New Value of z= %d”,z);

 }

Consider the i,j and k are stored in memory at address 1002,2004 and 5006.

Output:

Value of i =3

 Value of j = 1.5

 Value of k = c

 Original Value of x = 1002

 Original Value of y= 2004

 Original Value of z= 5006

New Value of x =1004

New Value of y= 2008

New Value of z= 5007

 Pointer Arithmetic
 int a=5,*pi=&a;

 float b=2.2,*pf=&b;

 char c=‘x’,*pc=&c;

Suppose the address of variable a,b and c are 1000,4000,5000 respectively.

 pi++ or pi++;

 pi=pi-3;

 pi=pi+5;

 pi-- or pi--;

 pf++ or ++pf;

 pf=pf-3;

 pf=pf+5;

 pf-- or pf--;

 pc++ or pc++;

 pc=pc-3;

 pc=pc+5;

 pc-- or pc--;

 pi++ or pi++; pi=1000+2=1002

 pi=pi-3; pi=1002-3*2=996

 pi=pi+5; pi=996+5*2=1006

 pi-- or pi--; pi=1006-2=1004

 pf++ or ++pf; pf=4000+4=4004

 pf=pf-3; pf=4004-3*4=3992

 pf=pf+5; pf=3992+5*4=4012

 pf-- or pf--; pf=4012-4=4008

 pc++ or pc++; pc=5000+1=5001

 pc=pc-3; pc=5001-3=4998

 pc=pc+5; pc=4998+5=5003

 pc-- or pc--; pc=5003-1=5002

 main()

{

 int a=5;

 int *p;

 p=&a;

 printf(“Value of p=Address of a=%u”,p);

 printf(“Value of p=%u”,++p);

 printf(“Value of p=%u”,p++);

 printf(“Value of p=%u”,--p);

 printf(“Value of p=%u”,p--);

 printf(“Value of p=%u”,p);

}

Output:

Value of p=address of a=1000

Value of p=1002

Value of p=1002

Value of p=1002

Value of p=1002

Value of p=1000

Precedence of Increment/Decrement Operator

(i) x=*ptr++;

(ii) x=*++ptr;

(iii) x=++*ptr;

(iv) x=(*ptr)++;
Given value and addresses of ptr, find the values of x given

above.

ptr

 2000 2002

25 25 38 38

(i) x=*ptr++; It is also equivalent to *(ptr++)

 x=*ptr;

 ptr=ptr+1;

 Value of x=25, Address contained in ptr=2002, *ptr=38

(ii) x=*++ptr; It is also equivalent to *(++ptr)

 ptr=ptr+1;

 x=*ptr;

Value of x=25, Address contained in ptr=2002, *ptr=38

(iii) x=++*ptr; It is also equivalent to ++(*ptr)

 *ptr=*ptr+1;

 x=*ptr;

Value of x=26, Address contained in ptr=2000, *ptr=26

(iv) x=(*ptr)++;

 x=*ptr;

 *ptr=*ptr+1;

Value of x=25, Address contained in ptr=2000, *ptr=26

 int main()

{

 int *p, i=10;

 p=&i;

 i++;

 printf(“%d %d\n”,i,*p);

 i=i+10;

 printf(“%d %d\n”,i,*p);

 *p=*p+10;

 printf(“%d %d\n”,i,*p);

 (*p)++;

 printf(“%d %d\n”,i,*p);

 printf(“Enter a value for i\n”);

 scanf(“%d”,p);

 printf(“%d %d”,i,*p);

 return 0;

}

Output:

11 11

21 21

31 31

32 32

Enter a value for i

56

56 56

 int main()

{

 int *p, i=10, j=90;

 p=&j;

 printf(“Addresses of i and j are \n”);

 printf(“%u %u\n”, &i, &j);

 i++;

 printf(“%d %d\n”,i,*p);

 i=i+10;

 printf(“%d %d\n”,i,*p);

 *p=*p+10;

 printf(“%d %d\n”,i,*p);

 *p++;

 printf(“%d %d\n”,i,*p);

 return 0;

}

Address Memory Variable

0023FF68 p

0023FF6C 90 j

0023FF70 10 i

Output

Address of i and j are:

 0023FF70 0023FF6C

 11 90

 21 90

 21 100

 21 21

 Pointers and One Dimensional Arrays

 5000 5002 5004 5006 5008

 arr[0] arr[1] arr[2] arr[3] arr[4]

 int arr[5] = {1,2,3,4,5};

Here 5000 is the address of first element.

Since each element (type int) takes 2 bytes,so address
of next element is 5002, and so on.

The address of the first element of array is known as
the base address.

 1 2 3 4 5

The relationship between pointer and array

1. Element of an array are stored in consecutive memory locations.

2. The name of an array is a constant pointer that points to the first

element of the array, i.e it stores the address of the first element , also

known as the base address of array.

3. According to pointer arithematic, when a pointer variable is

incremented,it points to the next location of its base type.

 arr[0] arr[1] arr[2] arr[3] arr[4]

1. 2000 2002 2004 2006 2008

 5 10 15 20 25

main()

 {

 int arr[5] ={5,10,15,20,25};

 int i ;

 for(i=0;i<5;i++)

 {

 printf(“Value of arr[%d]=%d\t”, i, arr[i]);

 printf(“Address of arr[%d]=%u\n”, i, &arr[i]);

 }

Output

Value of arr[0]=5 Address of arr[0]=2000

Value of arr[1]=10 Address of arr[0]=2002

Value of arr[2]=15 Address of arr[0]=2004

Value of arr[3]=20 Address of arr[0]=2006

Value of arr[4]=25 Address of arr[0]=2008

(arr+i) denotes the address of &arr[i]

(arr+1) denotes & arr[1] i.e address of arr[1]

arr  points to 0th element  &arr[0] 2000

arr+1  points to 1st element  &arr[1] 2002

arr+2  points to 2nd element  &arr[2] 2004

arr+3  points to 3rd element  &arr[3] 2006

arr+4  points to 4th element  &arr[4] 2008

*arr or *(arr+0) denotes the 0th element of array.

*(arr+i)  arr[i]

*arr  Value of 0th element  arr[0] 5

*(arr+1)  Value of 1st element  arr[1] 10

*(arr+2)  Value of 2nd element  arr[2] 15

*(arr+3)  Value of 3rd element  arr[3] 20

*(arr+4)  Value of 4th element  arr[4] 25

main()

 {

 int arr[5] ={5,10,15,20,25};

 int i ;

 for(i=0;i<5;i++)

 {

 printf(“Value of arr[%d]=%d\t”, i, * (arr+i));

 printf(“Address of arr[%d]=%u\n”, i, arr+i);

 }

The previous program can also be written as

above

 arr[i] is equivalent to *(arr+i)

 *(arr+i) is same as *(i+arr)

 *(i+arr) is equivalent to i[arr]

 arr[i] is equivalent to i[arr]

main()

 {

 int arr[5] ={5,10,15,20,25};

 int i=0 ;

 for(i=0;i<5;i++)

 {

 printf(“Value of arr[%d]=”, i);

 printf(“%d\t”,arr[i]);

 printf(“%d\t”,*(arr+i));

 printf(“%d\t”,*(i+arr));

 printf(“%d\t”,i[arr]);

 printf(“Address of arr[%d]= %u\n”, i,&arr[i]);

}

Output

Value of arr[0]=5 5 5 5

Address of arr[0]=2000

Value of arr[1]=10 10 10 10

Address of arr[1]=2002

Value of arr[2]=15 15 15 15

Address of arr[2]=2004

Value of arr[3]=20 20 20 20

Address of arr[3]=2006

Value of arr[4]=25 25 25 25

Address of arr[4]=2008

Subscripting Pointer Variables

 ptr

 4500 arr[0] arr[1] arr[2] arr[3] arr[4]

 2000 2002 2004 2006 2008

 int *ptr;

 ptr=arr; /*we can also write ptr=&arr[0];*/

The name of an array is a constant pointer hence it always points to the

0th element of the array.

 5 10 15 20 25

2000 2000

 arr =# /* Illegal*/

 arr ++; /* Illegal*/

 arr =arr-1; /* Illegal*/

 But since ptr is a pointer variable, all these
operations are valid for it.

 ptr =# /*Now ptr points to variable num*/

 ptr ++; /* ptr points to next location*/

 ptr =ptr-1; /* ptr points to previous location*/

main()

 {

 int arr[5] ={5,10,15,20,25};

 int i, *p;

 p=arr;

 for(i=0;i<5;i++)

 {

printf(“Address of arr[%d]= %u %u %u %u\n”, i, &arr[i], arr+i, p+i, &p[i]);

printf(“Value of arr[%d]=%d %d %d %d”, i , arr[i], *(arr+i), *(p+i), p[i]);

}

Output

Address of arr[0]=2000 2000 2000 2000

Value of arr[0]= 5 5 5 5

Address of arr[0]=2002 2002 2002 2002

Value of arr[1]= 10 10 10 10

Address of arr[0]=2004 2004 2004 2004

Value of arr[2]= 15 15 15 15

Address of arr[0]=2006 2006 2006 2006

Value of arr[3]= 20 20 20 20

Address of arr[0]=2008 2008 2008 2008

Value of arr[4]= 25 25 25 25

Pointer to an Array
• We declare a pointer to an array as:

 int (*ptr)[10];

• Here ptr is pointer that can point to an array of 10 integers.

• It is necessary to enclose the pointer name inside parentheses.

• Here the type of ptr is ‘pointer to an array of 10 integers’.

• Pointer that points to the 0th element of array and pointer that

points to the whole array are totally different.

• Here p is a pointer that points to the 0th element of array arr

• While ptr is a pointer that points to the whole array arr.

• The base type of p is ‘int’ while the base type of ptr is ‘an array of 5

integers’.

• When we write ptr++ ,the the pointer is shifted by 10 bytes.

p

 2500 arr[0] arr[1] arr[2] arr[3] arr[4]

ptr

 3000 3002 3004 3006 3008

 4500

 3 5 6 7 9

3000 3000

3000 3000

Program to understand pointer to an integer and pointer to an array of integers

main()

 {

 int *p;

 int (*ptr)[5];

 int arr[5];

 p=arr;

 ptr=arr;

 printf(“p=%u, ptr=%u\n”,p,ptr);

 p++;

 ptr++;

 printf(“p=%u, ptr=%u\n”,p,ptr);

 }

Output

p=3000,ptr=3000

P=3002,ptr=3010

main()

 {

 int arr[5]={3,5,6,7,9}

 int *p=arr;

 int (*ptr)[5]=arr;

 printf(“p=%u, ptr=%u\n”,p,ptr);

 printf(“*p=%d, *ptr=%u\n”,*p,*ptr);

 printf(“sizeof(p)=%u, sizeof(*p)=%u\n”,sizeof(p), sizeof(*p));

 printf(“sizeof(ptr)=%u, sizeof(*ptr)=%u\n”,sizeof(ptr), sizeof(*ptr));

}

Output

p=3000,ptr=3000

*p=3,*ptr=3000

sizeof(p)=2, sizeof(*p)=2

sizeof(ptr)=2, sizeof(*ptr)=10

Pointer And Two Dimensional Arrays

In a 2-D array we can access each element by using two subscripts i.e

the first represents the row no. and the second represents the

column no.

We can access any element arr[i][j] of this array using the pointer

expression *(*(arr+i)+j).

Let us consider a 2-D array arr[3][4]

int arr[3][4]={{10,11,12,13},{20,21,22,23},{30,31,32,33}};

 Col 0 Col 1 Col 2 Col3

Row 0

Row1

R0w2

 10 11 12 13

 20 21 22 23

 30 31 32 33

Actually in 2-D array elements are stored in row major order i.e rows

are placed next to each other.

Each row can be considered as 1-D array ,so a two dimensional array

can be considered as a collection of 1-D array that are placed one

after the another.

In other words we can say that 2-D array is an array of arrays.

 arr[0][0] arr[1][0] arr[2][0]

5000 5002 5004 5006 5008 5010 5012 5014 5016 5018 5020 5022

So here arr is an array of 3 elements where each element is a 1-D array of integers.

The name of the array is a constant pointer that points to 0th element of an array.

In case of 2-D arrays , 0th element is a 1-D array, so the name of a 2-D array

represents a pointer to a 1-D array.

10 11 12 13 20 21 22 23 30 31 32 33

• For ex: in the above case ,arr is a pointer to 0th 1-D array and contains address

5000.

• Since arr is a ‘pointer to an array of 4 integers’, so acco. to pointer arithmetic, the

expression (arr+1) will represent the address 5008 and expression (arr+2) will

represent address 5016.

• So we can say arr points to the 0th 1-D array,(arr+1) points to the 1st 1-D array

and (arr+2) points to the 2nd 1-D array.

arr 

arr+1

arr+2

 10 11 12 13

 20 21 22 23

 30 31 32 33

 arr- Points to 0th element of arr- Points to 0th 1-D array -5000

 arr+1- Points to 1st element of arr- Points to 1st 1-D array -5008

 arr+2- Points to 2nd element of arr- Points to 1st 1-D array -5016

In general we can write :

arr+i Points to ith element of arr  points to ith 1-D array .

*(arr+0) –arr[0] Base address of 0th 1-D array  Points to 0th element of 0th 1-D array
--5000

*(arr+1) -- Base address of 1st 1-D array Points to 0th element of 1st 1-D array --
5008

*(arr+2) -- Base address of 2nd 1-D array Points to 0th element of 2nd 1-D array –
5016

*(arr+i) –arr[i] Base address of ith 1-D array  Points to 0th element of ith 1-D array

Both (arr+i) and *(arr+i) are pointers, but their base type are different.

The base type of (arr+i) is ‘an array of 4 ints’.

While the base type of *(arr+i) is ‘int’ and it contains the address of 0th element of ith

1-D array, so we can get the addresses of subsequent elements in the ith 1-D array

by adding integers values to *(arr+i).

For Ex: *(arr+i)+1 will represent the address of 1st element of ith 1-D array and *(arr+i)+2

will represent the address of 2nd element of ith 1-D array.

 *(arr+i)+j will represent the address of jth element of ith 1-D array.

 arr Points to 0th 1-D array

 *arr Points to 0th element of 0th 1-D array

 (arr+i) Points to ith 1-D array

 *(arr+i) Points to 0th element of ith 1-D array

 *(arr+i) +j Points to jth element of ith 1-D array

 ((arr+i) +j) Represents the value of jth element of ith 1-D array

 *arr

 arr

 arr+1

 arr+2  *(*(arr+2)+3)

 *(arr+2) *(arr+2)+3

 10 11 12 13

 20 21 22 23

 30 31 32 33

 main()

{

 int arr[3][4]= {{10,11,12,13} ,

 {20,21,22,23},

 {30,31,32,33}};

 int i,j;

for(i=0;i<3;i++)

{

 printf(“address of %dth array =%u %u”,i ,arr[i],*(arr+i));

for(j=0;j<4;j++)

 printf(“%d %d”,arr[i]’[j],*(*(arr+i)+j));

}

}

Output

Address of 0th 1-D array=5000 5000

10 10 11 11 12 12 13 13

Address of 1th 1-D array=5008 5008

20 20 21 21 22 22 23 23

Address of 0th 1-D array=5016 5016

 30 30 31 31 32 32 33 33

Subscripting Pointer To An Array

 int arr[3][4]= {{10,11,12,13} ,

 {20,21,22,23},

 {30,31,32,33}};

 int (*ptr)[4];

 ptr=arr;

main()

{

 int i, arr[3][4]= {{10,11,12,13} ,

 {20,21,22,23},

 {30,31,32,33}};

 int (*ptr)[4];

 ptr=arr;

 printf(“%u %u %u”,ptr ,ptr+1,ptr+2);

 printf(“%u %u %u”,*ptr ,*(ptr+1),*(ptr+2));

 printf(“%d %d %d”,**ptr ,*(*(ptr+1)+2),*(*(ptr+2)+3));

 printf(“%d %d %d”,ptr[0] [0],ptr[1][2],ptr[2][3]);

}

output

 5000 5008 5016

 5000 5008 5016

 10 22 33

 10 22 33

Pointer and Three Dimensional Arrays

 int arr[2][3][2]= { { {5,10} ,

 {6,11},

 {7,12}

 },

 { {20,30} ,

 {21,31},

 {22,32};

 }

 };

We can consider a three dimensional array to be an array of 2-D arrays i.e each element of a 3-D array

is considered to be a 2- D array.

The 3-D array arr can be considered as an array consisting of two elements where each element is a 2-D

array.

The name of the array arr is a pointer to the 0th element of the array,so arr points to the 0th 2-D array

 arr Points to 0th 2-D array

 (arr+i) Points to ith 2-D array

 *(arr+i) Gives base address of ith 2-D array, so points to 0th

 element ith 2-D array, each element of 2-D array is 1-D array

*(arr+i) +j Points to jth 1-D array of ith 2-D array

((arr+i) +j) Gives base address of jth 1-D array of ith 2-D array,

 so it points to 0th element jth 1-D array of ith 2-D array

((arr+i) +j)+k Points to kth element of jth 1-D array of ith 2-D

 array.

((*(arr+i)+j)+k) Gives the value of kth element of jth 1-D array of ith 2-D

 array.

int arr[2][3][2]= { { {5,10} ,

 {6,11},

 {7,12}

 },

 { {20,30} ,

 {21,31},

 {22,32};

 }

 };

 int i,j, k;

 for(i=0;i<2;i++)

 for(j=0;j<3;j++)

 {

 for(k=0;k<2;k++)

 printf(“%d \t”, *(*(*(arr+i)+j)+k));

 printf(“\n”);

 }

}

Output:

5 10

6 11

7 12

20 30

21 31

22 32

Array of Pointers
We can declare an array that contains pointers as its elements.

Every element of this array is a pointer variable that can hold address of any

variable of appropriate type.

Syntax:

 datatype *arrayname[size]

 int *arrp[10]; /*this is known as array of pointers*/

Program for understanding array of pointers

 a b c

 #include<stdio.h> 2012 2560 3020

 main()

 { pa[0] pa[1] pa[2]

 int *pa[3];

 int i , a=5, b=10, c=15;

 pa[0]=&a; 5000 5002 5004

 pa[1]=&b;

 pa[2]=&c;

 for(i=0;i<3;i++)

 {

 printf(“pa[%d]=%u\t”,i,pa[i]);

 printf(“*pa[%d]=%d\t”,i, *pa[i]);

 }

}

Output

 pa[0] =2012 *pa[0] = 5

 pa[1] =2560 *pa[1] =10

 pa[2] =3020 *pa[2] = 15

2012 2560 3020

15 15 10 10 5 5

In the above program pa is declared as an array of pointers. Every element of this

array is a pointer to an integer.

#include<stdio.h>

 main()

 {

 int i , arr[4]={5,10,15,20);

 int *pa[4]; arr[0] arr[1] arr[2] arr[3]

 for(i=0; i<4;i++)

 pa[i]=&arr[i];

 for(i=0; i<4;i++) 1000 1002 1004 1006

 {

 printf(“pa[%d]=%u\t”,i,pa[i]); pa[0] pa[1] pa[2] pa[3]

 printf(“*pa[%d]=%d\t”,i, *pa[i]);

 }

} 2500 2502 2504 2506

Output

 pa[0] =1000 *pa[0] = 5

 pa[1] =1002 *pa[1] =10

 pa[2] =1004 *pa[2] = 15

 pa[3] =1006 *pa[3] = 20

5 10 15 20

1000 1002 1004 1006

Type Conversion

If the types of two operands in an assignment expression are different ,then the type of the right

hand side operand is converted to the type of left hand operand.

 main()

 {

 char c1,c2;

 int i1,i2;

 c1=‘H’ ;

 i1= 80.56; /* Demotion :float is converted to int ,only 80 is assigned to i1 */

 f1=12.6;

 c2=i1; /* Demotion : int converted to char */

 i2=f1; /* Demotion :float is converted to int */

/* Now c2 has character with ASCII value 80, i2 is assigned value 12 */

 printf(“c2=%c, i2=%d\n”,c2,i2);

 f2=i1; /* Promotion : int is converted to float */

 i2=c1; /* Promotion : char is converted to int */

/* Now i2 contains ASCII value of character ‘H’ which is 72 */

 printf(“f2=%.2f, i2=%d\n”, f2, i2);

Output

 c2=P, i2=12

 f2=80.00, i2=72

Explicit type Conversion or Typecasting

 float z;

 int x=20,y=3;

 z=x/y;

The value of z will be 6.0 instead of 6.66.

The syntax of cast operator is:

 (datatype) expression

 z=(float)x/y;

main()

{

 int x=5,y=2;

 float p,q;

 p= x/y;

 printf(“p=%f\n”,p);

 q=(float)x/y;

 printf(“q=%f\n”,q);

}

Output

 p=2.000000

 q=2.500000

Dynamic Memory Allocation
The memory allocation that we have done till now was static

memory allocation.

The memory that could be used by the program was fixed i.e we

could not increase or decrease the size of the memory during the

execution of the program .

In many applications it is not possible to predict how much memory

would be needed by the program at run time.

 int emp_no[200];

In an array it is must to specify the size of array while declaring so

the size of this array will be fixed during run time.

Now 2 types of problem may occur:

One case can be if 50 nos of memory are required rest 150 are wasted. Similarly if

205 is the required memory and there are only 200 memory spaces then we will

run shortage of memory.

To overcome this problem we use the following:

• The process of allocating memory at the time of execution is called dynamic

memory allocation.

• The allocation and release of this memory space can be done with the help of

some built-in functions whose prototypes are found in alloc.h and stdlib.h header

files.

• These functions take memory from memory area called heap and release this

memory whenever not required ,so that it can be used again for some other

purposes.

• malloc()

 Pointers play an important role in dynamic memory allocation because we

can access the dynamically allocated memory through pointers.

 Declaration: void *malloc(size_t size);

• This function is used to allocate memory dynamically. The argument size specifies

the number of bytes to be allocated.

• The type size_t is defined in stdlib.h as unsigned int.

 malloc() returns a pointer to the first byte of allocated memory.

• The returned pointer is of type void which can be type cast to appropriate type of

pointer. It is generally used as:

 ptr=(datatype *) malloc(specified size);

• Here ptr is a pointer of type datatype, and specified size is the size in bytes required

to be reserved in memory. The expression(datatype*) is used to typecast the pointer

returned by malloc().

• For Ex:

 int *ptr;

 ptr=(int *) malloc (10);

ptr

 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

2500 2500

This allocates 10 contiguous bytes of memory space and address of first byte is

stored in the pointer variable ptr. This space can hold 5 integers.

 ptr=(int *) malloc (5* sizeof(int));

If there is not sufficient memory available in heap then malloc() returns NULL. So

we should always check the value returned by malloc().

 ptr=(float *) malloc (10* sizeof(float));

 if(ptr= = NULL)

 printf(“sufficient memory is not available”);

Unlike memory allocated for variables and arrays, dynamically allocated memory

has no name associated with it. So it can be accessed only through pointers.

We have a pointer which points to the first byte of the allocated memory and we

can access the subsequent bytes using pointer arithematic.

Program to understand dynamic memory allocation of memory.

 #include<stdio.h>

 #include<alloc.h>

 main()

 {

 int *p, n, i;

 printf(“Enter the number of integers to be entered :”);

 scanf(“%d”,&n);

 p=(int *)malloc(n*sizeof(int));

 if(p==NULL)

 {

 printf(“memory not available\n”);

 }

 for(i=0;i<n;i++)

 {

 printf(“Enter an integer”);

 scanf(“%d”,p+i);

 }

 for(i=0;i<n;i++)

 printf(“%d\t”,*(p+i));

}

 calloc()

 Declaration: void *calloc(size_t n, size_t size);

The calloc function is used to allocate multiple blocks of memory.

It has two differences from malloc():

1. The first one is that it takes two arguments.

2. The second one specifies the size of each block.

3. Memory allocated by malloc() contains garbage value while memory allocated by calloc(

) is initialized to zero.

For Ex:

 ptr= (int *) calloc (5 , sizeof (int))

This allocates 5 blocks of memory, each block containing 2 bytes and the starting address is

stored in the pointer variable ptr, which is of type int.

An equivalent malloc() would be :

 ptr=(int *)malloc(5*sizeof(int));

Here we have to do the calculation by ourselves but in calloc() function does the calculation for

us.

realloc()

 Declaration: void * realloc(void *ptr, size_t newsize);

The function realloc() is used to change the size of the memory block. It alters the

size of the memory block without losing the old data. This is known as

reallocation of memory.

ptr=(int *)malloc(5*sizeof(int));if we want to change the size of the memory block

then we use realloc() as:

ptr=(int *) realloc (ptr , newsize); This statement allocates the memory space of

newsize bytes, and the starting address of this memory block is stored in the

pointer variable ptr.

Program to understand dynamic memory allocation of memory.

 #include<stdio.h>

 #include<alloc.h>

 main()

 {

 int *ptr, i;

 ptr=(int *)malloc(5*sizeof(int));

 if(ptr==NULL)

 {

 printf(“memory not available\n”);

 exit(1);

 }

 printf(“Enter 5 integers”);

 for(i=0;i<5;i++)

 {

 scanf(“%d”,ptr+i);

 ptr=(int *) realloc(ptr,9*sizeof(int)); /* Allocate memory for 4 more integers */

}

if(ptr==NULL)

 {

 printf(“memory not available\n”);

 exit(1);

 }

 printf(“Enter 4 more integers”);

 for(i=5;i<9;i++)

 {

 scanf(“%d”,ptr+i);

 for(i=0;i<9;i++)

 printf(“%d”,*(ptr+i));

 }

free()

Declaration: void free(void *p)

The dynamically allocated memory is not automatically released

It will exist till the end of program.

If we have finished working with the memory allocated dynamically, it is our

responsibility to release that memory so that it can be reused.

The function free() is used to release the memory space allocated dynamically.

The memory released by free() is made available to heap again and can be used

for some other purposes.

For Ex: free(ptr);

When the program terminates all the memory is released automatically by the

operating system, but it is a good practice to free whatever has been

allocated dynamically.

