Semiconductor Diode

Half-Wave Rectifier

- A very common application of diodes is half-wave rectification, where either the positive or negative half of the input is blocked.
- But, how do we generate a *constant* output?

(a)

• If the resistor in half-wave rectifier is replaced by a capacitor, a fixed voltage output is obtained since the capacitor (assumed ideal) has no path to discharge.

(b)

Diode-Capacitor Circuit: Ideal Model

• Note that (b) is just like V_{in}, only shifted down.

(a) (b)

• A path is available for capacitor to discharge. Therefore, V_{out} will not be constant and a ripple exists.

• For large C₁, V_{out} has small ripple.

- The ripple amplitude is the decaying part of the exponential.
- Ripple voltage becomes a problem if it goes above 5 to 10% of the output voltage.

- The diode has its maximum current at t₁, since that's when the slope of V_{out} is the greatest.
- This current has to be carefully controlled so it does not damage the device.

- A full-wave rectifier passes both the negative and positive half cycles of the input, while inverting the negative half of the input.
- As proved later, a full-wave rectifier reduces the ripple by a factor of two.

• The figure above shows a full-wave rectifier, where D_1 and D_2 pass/invert the negative half cycle of input and D_3 and D_4 pass the positive half cycle.

- The dead-zone around V_{in} arises because V_{in} must exceed 2 $V_{D,ON}$ to turn on the bridge.

Diode Circuits

Summary of Half and Full-Wave

• Full-wave rectifier is more suited to adapter and charger applications.

(b)

• Since C_1 only gets $\frac{1}{2}$ of period to discharge, ripple voltage is decreased by a factor of 2. Also (b) shows that each diode is subjected to approximately one V_p reverse bias drop (versus $2V_p$ in half-wave rectifier).

Half-wave Rectifiers

• Half-wave rectifier – A diode placed in series between a transformer (or ac line input) and its load.

Positive Half-wave Rectifiers

This circuit converts an ac input to a series of positive pulses.

Average Load Voltage and Current

- Average voltage (V_{ave}) The dc equivalent of a voltage waveform.
- Average current (I_{ave}) The dc equivalent of a current waveform.

For the output from a *half-wave* rectifier:

$$V_{ave} = \frac{V_{\rm pk}}{\pi}$$

$$I_{ave} = \frac{I_{\rm pk}}{\pi}$$

Negative Half-wave Rectifiers

This circuit converts an ac input to a series of negative pulses.

Peak Inverse Voltage (PIV)

Peak inverse voltage (PIV) – The maximum diode reverse bias produced by a given circuit.

For the diode in a half-wave rectifier:

