BJT transistors

FET Transistors – Regions

Region	Criteria	Effect on Current	Curren flow
Cut-off	$V_{GS} < V_{th}$	I _{DS} =0	D
Linear	$V_{GS} > V_{th}$ And $V_{DS} < V_{GS} - V_{th}$	Transistor acts like a variable resistor, controlled by V _{gs}	
Saturation	$V_{GS} > V_{th}$ And $V_{DS} > V_{GS} - V_{th}$	Essentially constant current	

JFET vs MOSFET Transistors

MOSFET	JFET	Current flow
High switching	Will operate at	D
speed	V _G <0	
Can have very low	Better suited for low	G (G
R _{DS}	signal amplification	
Susceptible to ESD		s <u> </u>
More commonly		
used as a power		
transistor		

Power Transistors

- Additional material for current handling and heat dissipation
- Can handle high current and voltage
- Functionally the same as normal transistors

Transistor Uses

- Switching
- Amplification
- Variable Resistor

Analysis of transistor circuits at DC

For all circuits: assume transistor operates in linear region write B-E voltage loop write C-E voltage loop

B-E junction acts like a diode

$$V_{\rm E} = V_{\rm B} - V_{\rm BE} = 4V - 0.7V = 3.3V$$

$$IE = (VE - O)/RE = 3.3/3.3K = 1mA$$
$$IC \approx IE = 1mA$$

Vc = 10 - IcRc = 10 - 1(4.7) = 5.3V

B-E Voltage loop

 $5 = I_B R_B + V_{BE}$, solve for I_B $I_B = (5 - V_{BE})/R_B = (5-.7)/100k = 0.043 mA$

 $I_{C} = \beta I_{B} = (100)0.043 \text{mA} = 4.3 \text{mA}$

$$Vc = 10 - IcRc = 10 - 4.3(2) = 1.4V$$

$$V_{\rm E} = 0 - .7 = -0.7 V$$

8

 $I_E = (V_E - -10)/R_E = (-.7 + 10)/10K = 0.93mA$

 $I_{c} \approx I_{E} = 0.93 \text{mA}$ $I_{B} = I_{B}/\beta = .93 \text{mA}/50 = 18.6 \mu\text{A}$

$$Vc = 10 - IcRc = 10 - .93(5) = 5.35V$$