BJT transistors

Problem

•Use a voltage divider, R^{B1} and R^{B2} to bias V^B to avoid two power supplies.

•Make the current in the voltage divider about 10 times I_B to simplify the analysis. Use $V_B = 3V$ and I = 0.2mA.

(a) R_{B1} and R_{B2} form a voltage divider.

Assume I >> I_B I = $Vcc/(R_{B1} + R_{B2})$

 $.2mA = 9 / (R_{B_1} + R_{B_2})$

AND

 $V_B = V_{CC}[R_{B_2}/(R_{B_1} + R_{B_2})]$

 $3 = 9 [R_{B_2}/(R_{B_1} + R_{B_2})]$, Solve for R_{B_1} and R_{B_2} .

 $R_{B_1} = 30K\Omega$, and $R_{B_2} = 15K\Omega$.

Find the operating point

•Use the Thevenin equivalent circuit for the base

•Makes the circuit simpler

 $\bullet V_{BB} = V_B = 3V$

•R^{BB} is measured with voltage sources grounde • $R_{BB} = R_{B1} || R_{B2} = 30 K\Omega || 15 K\Omega = .10 K\Omega$

B-E loop

 $V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$

IE =2.09 mA

C-E loop

Vcc = IcRc + Vce + IeRe

 $V_{CE} = 4.8 V$

This is how all DC circuits are analyzed and designed!