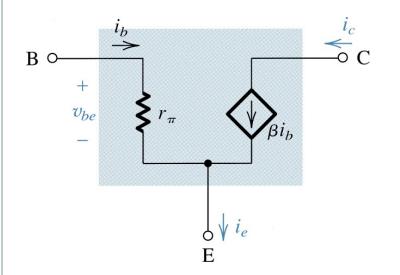
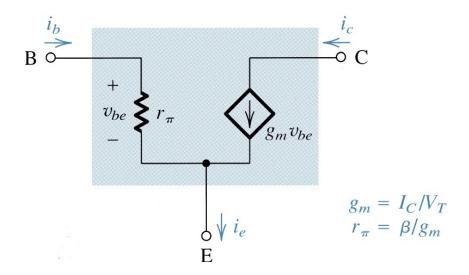

BJT transistors

Summary of DC problem

- •Bias transistors so that they operate in the linear region B-E junction forward biased, C-E junction reversed biased
- •Use $V_{BE} = 0.7$ (npn), $I_{C} \approx I_{E}$, $I_{C} = \beta I_{B}$
- •Represent base portion of circuit by the Thevenin circuit
- •Write B-E, and C-E voltage loops.
- •For analysis, solve for Ic, and Vce.
- •For design, solve for resistor values (Ic and Vce specified).

Summary of npn transistor behavior





Transistor as an amplifier

- •Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit.
- •An ac signal is usually superimposed on the DC circuit.
- •The location of the operating point (values of Ic and VcE) of the transistor affects the ac operation of the circuit.
- •There are at least two ac parameters determined from DC quantities.

Small-signal equivalent circuit models

- •ac model
- •Hybrid- π model
- •They are equivalent
- •Works in linear region only

Steps to analyze a transistor circuit

- DC problem Set ac sources to zero, solve for DC quantities, Ic and V_{CE} .
- Determine ac quantities from DC parameters Find g_m , r_{π} , and r_e .
- 3 ac problem Set DC sources to zero, replace transistor by hybrid- π model, find ac quantites, Rin, Rout, Av, and Ai.