InvertingAmplifier

(1) Kirchhoff node equation at V_{+} yields, $V_{+}=0$
(2) Kirchhoff node equation at V_{-} yields, $\frac{V_{i n}-V}{R_{a}}+\frac{V_{o}-V_{-}}{R_{f}}=0$

(3) Setting $V_{+}=V_{-}$yields

$$
\frac{V_{o}}{V_{i n}}=\frac{-R_{f}}{R_{a}}
$$

Notice: The closed-loop gain $V_{\mathrm{o}} / V_{\text {in }}$ is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subtract from the input voltage.

Multipke Inputs

(1) Kirchhoff node equation at V_{+} yields, $V_{+}=0$
(2) Kirchhoff node equation at V_{-} yields,

$$
\frac{V_{-}-V_{o}}{R_{f}}+\frac{V_{-}-V_{a}}{R_{a}}+\frac{V_{-}-V_{b}}{R_{b}}+\frac{V_{-}-V_{c}}{R_{c}}=0
$$

(3) Setting $V_{+}=V_{-}$yields

$$
V_{o}=-R_{f}\left(\frac{V_{a}}{R_{a}}+\frac{V_{b}}{R_{b}}+\frac{V_{c}}{R_{c}}\right)=-R_{f} \sum_{j=a}^{c} \frac{V_{j}}{R_{j}}
$$

Inverting Integrator

Now replace resistors R_{a} and R_{f} by complex components Z_{a} and Z_{f}, respectively, therefore

$$
V_{o}=\frac{-Z_{f}}{Z_{a}} V_{i n}
$$

Supposing

(ii) The input component is a resistor $\mathrm{R}, Z_{\mathrm{a}}$ $=R$

$$
\begin{aligned}
& \operatorname{become} \\
& v_{i}(t)=V_{i} e^{j \omega t}
\end{aligned}
$$

where

What happens if $Z_{\mathrm{a}}=1 / \mathrm{j} \omega C$ whereas, $Z_{\mathrm{f}}=R$?
Inverting differentiator

Example:

Op-Ampntegrator

(a) Determine the rate of change +5 V of the output voltage.

(b) Draw the output waveform.

Solution:

$$
V_{o(\max)}=10 \mathbf{~ V}
$$

(a) Rate of change of the output voltage

$$
\begin{aligned}
& \frac{\Delta V_{o}}{\Delta t}=-\frac{V_{i}}{R C}=\frac{5 \mathbf{~ V}}{(10 \mathbf{k} \Omega)(0.01 \mu \mathbf{F})} \\
= & -50 \mathbf{m V} / \mu \mathbf{s}
\end{aligned}
$$

(b) In $100 \mu \mathrm{~s}$, the voltage decrease

$$
\Delta V_{o}=(-50 \mathbf{m V} / \mu \mathbf{s})(100 \mu \mathbf{s})=-5 \mathbf{V}
$$

Op-Amp Differentiator

$$
v_{o}=-\left(\frac{d V_{i}}{d t}\right) R C
$$

