Homogeneous Function

A function $y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is homogeneou s of degree k if, for any number s where $s>0$
$s^{k} Y=f\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)$

Euler's Theorem

- Homogeneity of degree 1 is often called linear homogeneity.
- An important property of homogeneous functions is given by Euler's Theorem.

Euler's Theorem

For any multivariate function $y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
that is homogeneou s of degree k, $k y=x_{1} f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\cdots+x_{n} f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for any set of values ($x_{1}, x_{2}, \cdots, x_{n}$), where $f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is the partial derivative of the function with respect to its ith argument.

Proof Euler's Theorem

Definition homogeneou s function $s^{K} y=f\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)$
Take the partial derivative of the above with respect tos
$k s^{k-1} y=x_{1} f_{1}\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)+\cdots+x_{n} f_{n}\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)$
Letting $s=1$, we get Euler's Theorem
$k y=x_{1} f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\cdots+x_{n} f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
The converse of this theorem holds. If the above is true, then the original function is homogeneou s of degree k.

Arguments of Functions that are Homogeneous degree zero

Any function $f\left(x_{1}, x_{2}, \cdots, x_{i}, \cdots, x_{n}\right)$ that is homogeneou s of degree zero can be written as

$$
f\left(\frac{x_{1}}{x_{i}}, \frac{x_{2}}{x_{i}}, \cdots, 1, \cdots, \frac{x_{n}}{x_{i}}\right) \text { for any } i=1,2, \ldots, n
$$

Proof : Since the function is homogeneou s of degree 0 ,
$s^{0} f\left(x_{1}, x_{2}, \cdots, x_{i}, \cdots, x_{n}\right)=f\left(s x_{1}, s x_{2}, \cdots, s x_{i}, \cdots, s x_{n}\right)$
Let $s=\frac{1}{x_{i}}$, then
$f\left(x_{1}, x_{2}, \cdots, x_{i}, \cdots, x_{n}\right)=f\left(\frac{x_{1}}{x_{i}}, \frac{x_{2}}{x_{i}}, \cdots, 1, \cdots, \frac{x_{n}}{x_{i}}\right)$
$Q E D$

First Partial Derivatives of Homogeneous Functions

If the function, $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is homogeneou s of degree k, then each of ists first partial derivatives
$f_{i}=\frac{\partial f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial x_{i}}$ for any $\mathrm{i}=1,2, \cdots, \mathrm{n}$, is homogeneou s of degree $k-1$.

Proof of previous slide

We know $f\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)=s^{k} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$

$$
\frac{\partial f\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)}{\partial x_{i}}=\frac{\partial f\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)}{\partial\left(s x_{i}\right)} \cdot \frac{d\left(s x_{i}\right)}{d x_{i}}
$$

$=s f_{i}\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right) \quad$ and
$\frac{\partial s^{k} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial x_{i}}=s^{k} f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ setting the two equal
$s f_{i}\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)=s^{k} f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ or
$f_{i}\left(s x_{1}, s x_{2}, \cdots, s x_{n}\right)=s^{k-1} f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
Which implies the derivative is homogeneou s of degree $k-1$.

