Finding Partial Derivatives

- The partial derivative with respect to x is just the ordinary derivative of the function g of a single variable that we get by keeping y fixed:

Rule for Finding Partial Derivatives of $z=f(x, y)$

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Example

- If $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$, find $f_{x}(2, I)$ and $f_{y}(2, I)$.
- Solution Holding y constant and differentiating with respect to x, we get

$$
f_{x}(x, y)=3 x^{2}+2 x y^{3}
$$

and so

$$
f_{x}(2, I)=3 \cdot 2^{2}+2 \cdot 2 \cdot 1^{3}=16
$$

Solution (cont'd)

- Holding x constant and differentiating with respect to y, we get

$$
f_{x}(x, y)=3 x^{2} y^{2}-4 y
$$

and so

$$
f_{x}(2, I)=3 \cdot 2^{2} \cdot 1^{2}-4 \cdot 1=8
$$

Interpretations (cont'd)

- Partial derivatives can also be interpreted as rates of change.
- If $z=f(x, y)$, then...
- $\partial z / \partial x$ represents the rate of change of z with respect to x when y is fixed.
- Similarly, $\partial z / \partial y$ represents the rate of change of z with respect to y when x is fixed.

Example

- If $f(x, y)=4-x^{2}-2 y^{2}$, find $f_{x}(I, I)$ and $f_{y}(I, I)$.
- Interpret these numbers as slopes.
- Solution We have

$$
\begin{array}{ll}
f_{x}(x, y)=-2 x & f_{y}(x, y)=-4 y \\
f_{x}(1,1)=-2 & f_{y}(1,1)=-4
\end{array}
$$

Example

- If $f(x, y)=\sin \left(\frac{x}{1+y}\right)$, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- Solution Using the Chain Rule for functions of one variable, we have

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\cos \left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x}\left(\frac{x}{1+y}\right)=\cos \left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y} \\
& \frac{\partial f}{\partial y}=\cos \left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y}\left(\frac{x}{1+y}\right)=-\cos \left(\frac{x}{1+y}\right) \cdot \frac{x}{(1+y)^{2}}
\end{aligned}
$$

Example

- Find f_{x}, f_{y}, and f_{z} if $f(x, y, z)=e^{x y} \ln z$.
- Solution Holding y and z constant and differentiating with respect to x, we have

$$
f_{x}=y e^{x y} \ln z
$$

- Similarly,

$$
f_{y}=x e^{x y} \ln z \quad \text { and } \quad f_{z}=e^{x y} / z
$$

Higher Derivatives

- If f is a function of two variables, then its partial derivatives f_{x} and f_{y} are also functions of two variables, so we can consider their partial derivatives

$$
\left(f_{x}\right)_{x},\left(f_{x}\right)_{y},\left(f_{y}\right)_{x} \text {, and }\left(f_{y}\right)_{y},
$$

which are called the second partial derivatives of f.

Higher Derivatives (cont'd)

If $z=f(x, y)$, we use the following notation:

$$
\begin{aligned}
& \left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
& \left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
& \left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
& \left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

Example

- Find the second partial derivatives of

$$
f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}
$$

- Solution Earlier we found that

$$
f_{x}(x, y)=3 x^{2}+2 x y^{3} \quad f_{y}(x, y)=3 x^{2} y^{2}-4 y
$$

- Therefore

$$
\begin{array}{ll}
f_{x u}=\frac{\partial}{\partial x}\left(3 x^{2}+2 x y^{3}\right)=6 x+2 y^{3} & f_{y y}=\frac{\partial}{\partial y}\left(3 x^{2}+2 x y^{3}\right)=6 x y^{2} \\
f_{x y}=\frac{\partial}{\partial x}\left(3 x^{2} y^{2}-4 y\right)=6 x y^{2} & f_{y y}=\frac{\partial}{\partial y}\left(3 x^{2} y^{2}-4 y\right)=6 x^{2} y-4
\end{array}
$$

Mixed Partial Derivatives

- Note that $f_{x y}=f_{y x}$ in the preceding example, which is not just a coincidence.
- It turns out that $f_{x y}=f_{y x}$ for most functions that one meets in practice:

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Mixed Partial Derivatives (cont'd)

- Partial derivatives of order 3 or higher can also be defined. For instance,

$$
f_{x y y}=\left(f_{x y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial y \partial x}\right)=\frac{\partial^{3} f}{\partial y^{2} \partial x}
$$

and using Clairaut's Theorem we can show that $f_{x y y}=f_{y x y}=f_{y y x}$ if these functions are continuous.

Example

- Calculate $f_{x x y z}$ if $f(x, y, z)=\sin (3 x+y z)$.
- Solution

$$
\begin{aligned}
f_{x} & =3 \cos (3 x+y z) \\
f_{x x} & =-9 \sin (3 x+y z) \\
f_{x x y} & =-9 z \cos (3 x+y z) \\
f_{x x y z} & =-9 \cos (3 x+y z)+9 y z \sin (3 x+y z)
\end{aligned}
$$

