Extrema of

Function

Definition

* Absolute max or min is the largest/smallest possible value of the function
* Absolute extrema often coincide with relative extrema
*. A function may have several
 relative extrema
- It never has more than one absolute max or min

Given $f(x)$ defined on interval

- The number c belongs to the interval
* Then $\mathrm{f}(\mathrm{c})$ is the absolute minimum of f on the interval if

$$
f(x) \geq f(c)
$$

*. Similarly $\mathrm{f}(\mathrm{c})$ is the absolute maximum if $f(x) \leq f(c)$ for all x in the interval

Functions on Closed Interval

- Extreme Value Theorem
- A function f on continuous close interval [a, b] will have both an absolute max and min on the interval

* Find all absolute maximums, minimums

Example

* For the functions and intervals given, determine the absolute max and min

$$
\begin{aligned}
& f(x)=x^{4}-32 x^{2}-7 \text { on }[-5,6] \\
& y=\frac{8+x}{8-x} \text { on }[4,6] \\
& f(x)=\left(x^{2}+18\right)^{2 / 3} \text { on }[-3,3]
\end{aligned}
$$

Graphical Interpretation

* Consider a graph that shows production output as a function of hours of labor used

* For any point on the curve

- x-coordinate measures hours of labor
- y-coordinate measures output
- Thus $\frac{y}{x}=\frac{\text { output }}{\text { hours of labor }}=\frac{f(x)}{x}$

We seek to maximize this value

Note that this is also the slope of the line from the origin through a given point
hours of labor

*. It can be shown that what we seek is the solution to the equation

$$
f^{\prime}(x)=\frac{f(x)}{x}
$$

Now we have the (x, y) where the line through the origin and tangent to the curve is the steepest
hours of labor

