
TAYLOR AND MACLAURIN  

   How to represent certain types of functions as sums of power series 

  You might wonder why we would ever want to express a known function 
as a sum of infinitely many terms. 

  Integration. (Easy to integrate polynomials) 

Finding limit 

  Finding a sum of a series (not only geometric, telescoping) 
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Maclaurin series  ( center is 0 ) 

Example: 
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Find Maclaurin series 



TAYLOR AND MACLAURIN  

Important Maclaurin Series 

MEMORIZE: these Maclaurin Series  
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Maclaurin series  ( center is 0 ) 

Example: 
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Find Maclaurin series 
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Maclaurin series  ( center is 0 ) 

Example: 
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The Binomial Series 

Example: 
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The Binomial Series 

binomial series. 

NOTE: 
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The Binomial Series 

binomial series. 



The Binomial Series 

TERM-092 

binomial series. 
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Important Maclaurin Series and Their Radii of Convergence 

Example: 

)1ln()( xxf 

Find Maclaurin series 
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Maclaurin series  ( center is 0 ) 

Taylor series  ( center is a ) 
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Taylor series  ( center is a ) 

Taylor polynomial of order n 

DEF: 
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The Taylor polynomial of order 3 generated by the function f(x)=ln(3+x)  at  a=1  is: 

Taylor polynomial of order n 

DEF: 
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Taylor series  ( center is a ) 
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Remainder consist of infinite terms  
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for some c between a and x. 

Taylor’s Formula 
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for some c between a and x. 

Taylor’s Formula 
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for some c between 0 and x. 

Taylor’s Formula 
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Taylor series  ( center is a ) 

nth-degree Taylor polynomial of f at a. 

DEF: 

Remainder 
DEF: 

)()()( xTxfxR nn 

Example: 








01

1
)(

n

n
x

x
xf

32
3

0

3 1)( xxxxxT
n

n 







654

4

3 )( xxxxxR
n

n


