TAYLOR AND MACLAURIN

- How to represent certain types of functions as sums of power series

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

- You might wonder why we would ever want to express a known function as a sum of infinitely many terms.
$>$ Integration. (Easy to integrate polynomials) $\int e^{x^{2}} d x$
$>$ Finding limit $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
$>$ Finding a sum of a series (not only geometric, telescoping) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$

TAYLOR AND MACLAURIN

Example: $f(x)=e^{x}$

$$
e^{x}=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots \cdots
$$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Maclaurin series (center is 0)

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(x)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Example: Find Maclaurin series

$$
f(x)=\cos x
$$

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

TAYLOR AND MACLAURIN

Important Maclaurin Series

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& (1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots=-\sum_{n=1}^{\infty} \frac{x^{n}}{n} \quad|x|<1
$$

MEMORIZE: these Maclaurin Series

TAYLOR AND MACLAURIN

Maclaurin series (center is $\mathbf{0}$)

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Example:

Find Maclaurin series

$$
f(x)=\tan ^{-1} x
$$

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& (1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

TAYLOR AND MACLAURIN

The Maclaurin series for $f(x)=e^{-x^{2} / 3}$ is given by
(a) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n}}{3^{n} \cdot n!}$
(b) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n}}{3 \cdot n!}$
(c) $\sum_{n=1}^{+\infty}(-1)^{n} \frac{x^{n}}{3^{n} \cdot n!}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
(d) $\sum_{n=0}^{+\infty} \frac{x^{2 n}}{3^{n} \cdot n!}$
(e) $\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{x^{2 n}}{9^{n} \cdot n!}$

TAYLOR AND MACLAURIN

The coefficient of x^{10} in the Maclaurin series of $f(x)=\sin \left(x^{2}\right)$ is equal to
(a) $\frac{1}{6}$
(b) 0
(c) $\frac{-1}{6}$
(d) $\frac{1}{120}$
(e) $\frac{1}{10}$

TAYLOR AND MACLAURIN

The Maclaurin series for $f(x)=x^{2} \cos (\sqrt{2} x)$ is
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{(2 n)!} x^{2 n+2}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\sqrt{2})^{n}}{(2 n)!} x^{2 n}$
(c) $\sum_{n=0}^{\infty} \frac{(\sqrt{2})^{n}}{(2 n+1)!} x^{2 n+1}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+2}}{2 n} x^{2 n+1}$ $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\sqrt{2} x)^{2 n+2}}{(2 n)!}$

The coefficient of x^{4} in the Maclaurin series of $\cos ^{2} x$ is
(a) $\frac{1}{4}$
(b) $\frac{2}{3}$
(c) 2
(d) $\frac{1}{2}$
(e) $\frac{1}{3}$

$$
\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos (2 x)
$$

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

TAYLOR AND MACLAURIN

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Maclaurin series (center is $\mathbf{0}$)

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Example:

Find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{1}{n!}
$$

The Binomial Series

DEF:

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

Example:

$$
\binom{1 / 3}{3}=\frac{\frac{1}{1}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}=\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{6}=\frac{5}{81}
$$

Example:

$$
\binom{1 / 2}{5}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\left(\frac{1}{2}-3\right)\left(\frac{1}{2}-4\right)}{5!}
$$

The Binomial Series

binomial series.

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
$$

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

NOTE:

$$
\binom{k}{0}=1 \quad\binom{k}{1}=\frac{k}{1!}=k \quad\binom{k}{2}=\frac{k}{2!}=\frac{k(k-1)}{2!}
$$

The Binomial Series

Using the binomial series, we get $\sqrt[3]{1+x}=$ (for $|x|<1$)
(a) $1+\frac{1}{3} x+\frac{1}{9} x^{2}+\frac{1}{27} x^{3}+\cdots$
(b) $1+\frac{1}{3} x-\frac{1}{9} x^{2}+\frac{5}{81} x^{3}+\cdots$
(c) $1+x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots$
(d) $1-\frac{1}{3} x+\frac{1}{6} x^{2}+\frac{3}{27} x^{3}+\cdots$
(e) $1+\frac{1}{3} x+\frac{1}{9} x^{2}-\frac{5}{81} x^{3}+\cdots$

binomial series.

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots \quad R=1
$$

The Binomial Series

If the Maclaurin series of $(1+x)^{3 / 2}$ is
(a) $-\frac{5}{128}$

$$
A+B x+C x^{2}+D x^{3}+E x^{4}+\cdots,
$$

then $D+E=$
(b) $\frac{9}{128}$
(c) $\frac{7}{16}$

TERM-092

$$
\begin{aligned}
& \text { (d) }-\frac{7}{16} \\
& \text { (e) }-\frac{7}{128}
\end{aligned}
$$

binomial series.

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots \quad R=1
$$

TAYLOR AND MACLAURIN

Important Maclaurin Series and Their Radii of Convergence

$$
\begin{array}{ll}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & R=1 \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & R=\infty \\
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots=-\sum_{n=1}^{\infty} \frac{x^{n}}{n} & |x|<1
\end{array}
$$

Example: Find Maclaurin series

$$
f(x)=\ln (1-x)
$$

TAYLOR AND MACLAURIN

Maclaurin series (center is 0)

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
$$

Taylor series (center is a)

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

TAYLOR AND MACLAURIN

The first three terms of the Taylor series of $f(x)=\cos (2 x)$ about $a=\pi$ are given by
(a) $1-2(x-\pi)^{2}+\frac{2}{3}(x-\pi)^{4}$
(b) $1-2(x-\pi)-2(x-\pi)^{2}$
(c) $1-2(x-\pi)^{2}+16(x-\pi)^{4}$
(d) $-1+2(x-\pi)+\frac{4}{3}(x-\pi)^{3}$
(e) $1+2(x+\pi)^{2}-\frac{2}{3}(x+\pi)^{4}$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{aligned}
$$

TAYLOR AND MACLAURIN

The first three nonzero terms of the Taylor series of
$f(x)=\sin (2 x)$ about $a=\frac{\pi}{2}$ are given by
(a) $-2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^{3}-\frac{4}{15}\left(x-\frac{\pi}{2}\right)^{5}$
(b) $1-2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^{3}$
(c) $-2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^{2}-\frac{4}{15}\left(x-\frac{\pi}{2}\right)^{3}$
(d) $2\left(x-\frac{\pi}{2}\right)+\frac{4}{3}\left(x-\frac{\pi}{2}\right)^{3}-\frac{4}{15}\left(x-\frac{\pi}{2}\right)^{5}$
(e) $-2\left(x-\frac{\pi}{2}\right)+4\left(x-\frac{\pi}{2}\right)^{2}-4\left(x-\frac{\pi}{2}\right)^{5}$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{aligned}
$$

The Taylor series of $f(x)=\frac{1}{x}$ about $x=2$ is
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-2)^{n+1}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(x-2)^{n}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-2)^{n}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x+2)^{n}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(x+2)^{n}$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{aligned}
$$

TAYLOR AND MACLAURIN

Taylor series (center is a)

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

DEF:

$$
\begin{aligned}
P_{n}(x)=f(a)+f^{\prime}(a)(x-a) & +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Taylor polynomial of order \mathbf{n}

TAYLOR AND MACLAURIN

The Taylor polynomial of order 3 generated by the function $f(x)=\ln (3+x)$ at $a=1$ is:
(a) $\ln 4+\frac{(x-1)}{4}-\frac{(x-1)^{2}}{32}+\frac{(x-1)^{3}}{192}$
(b) $\ln 4-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{32}-\frac{(x-1)^{3}}{192}$
(c) $\frac{(x-1)}{4}-\frac{(x-1)^{2}}{32}+\frac{(x-1)^{3}}{192}-\frac{(x-1)^{4}}{256}$
(d) $-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{32}-\frac{(x-1)^{3}}{192}+\frac{(x-1)^{4}}{256}$
(e) $\ln 4+\frac{(x-1)}{4}+\frac{(x-1)^{2}}{32}+\frac{(x-1)^{3}}{192}$

DEF: $\quad P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots$

Taylor polynomial of order n

$$
+\frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

TAYLOR AND MACLAURIN

The first three terms of the Taylor series of $f(x)=\frac{1}{\sqrt{x}}$ about $a=4$ are given by
(a) $\frac{1}{4}-\frac{1}{16}(x-4)+\frac{3}{4}(x-4)^{2}$
(b) $\frac{1}{2}-\frac{1}{2}(x-4)+\frac{3}{4}(x-4)^{2}$
(c) $\frac{1}{2}-(x-4)+(x-4)^{2}$
(d) $\frac{1}{2}+\frac{1}{16}(x+4)-\frac{1}{128}(x+4)^{2}$
(e) $\frac{1}{2}-\frac{1}{16}(x-4)+\frac{3}{256}(x-4)^{2}$

The first four terms of the Taylor series of $f(x)=4+\ln x$ about $a=1$ are given by
(a) $4+(x-1)-(x-1)^{2}+2(x-1)^{3}$
(b) $4+(x+1)-(x+1)^{2}+2(x+1)^{3}$
(c) $4+(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}$
(d) $4+5(x-1)-\frac{3}{2}(x-1)^{2}+(x-1)^{3}$
(e) $4+x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}$

TAYLOR AND MACLAURIN

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Taylor series (center is a)

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Taylor polynomial of order \mathbf{n}

$$
R_{n}(x)=\sum_{k=n+1}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Remainder

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

Taylor Series

Taylor's Formula $\quad R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{k} \quad$ Remainder consist of infinite terms for some c between a and x.

REMARK: Observe that: $\quad f^{(n+1)}(c)$ not $f^{(n+1)}(a)$

TAYLOR AND MACLAURIN

Taylor's Formula

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{k}
$$

for some c between a and x.

Taylor's Formula

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{k}
$$

for some c between 0 and x.

TAYLOR AND MACLAURIN

Taylor series (center is a)

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

DEF: $\quad T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}$

$$
=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

$\boldsymbol{n t h}$-degree Taylor polynomial of \boldsymbol{f} at \mathbf{a}.

DEF:

$$
R_{n}(x)=f(x)-T_{n}(x) \quad \text { Remainder }
$$

Example: $\quad f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$

$$
\begin{aligned}
& T_{3}(x)=\sum_{n=0}^{3} x^{n}=1+x+x^{2}+x^{3} \\
& R_{3}(x)=\sum_{n=4}^{\infty} x^{n}=x^{4}+x^{5}+x^{6}+\cdots \cdots
\end{aligned}
$$

