Characteristic Equatuion Eigenvalues and Eigenvectors

Definitions

Definition: A nonzero vector \mathbf{x} is an **eigenvector** (or characteristic vector) of a square matrix \mathbf{A} if there exists a scalar $\mathbf{\lambda}$ such that $\mathbf{A}\mathbf{x} = \mathbf{\lambda}\mathbf{x}$. Then $\mathbf{\lambda}$ is an **eigenvalue** (or characteristic value) of \mathbf{A} .

Note: The zero vector can not be an eigenvector even though $A0 = \lambda 0$. But $\lambda = 0$ can be an eigenvalue.

Example:

Show
$$x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector for $A = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$

Solution:
$$Ax = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

But for
$$\lambda = 0$$
, $\lambda x = 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus, is an eigenvector of A, and $\lambda = 0$ is an eigenvalue.

Geometric interpretation of Eigenvalues and Eigenvectors

An $n \times n$ matrix **A** multiplied by $n \times 1$ vector **x** results in another $n \times 1$ vector **y=Ax**. Thus **A** can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the **eigenvectors** of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the **eigenvalue** associated with that eigenvector.

Eigenvalues

Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ such that $Ax = \lambda x$ or, equivalently,

$$Ax - \lambda x = 0$$
 or

$$(A - \lambda I)x = 0$$

If we define a new matrix $\mathbf{B} = \mathbf{A} - \lambda \mathbf{I}$, then

$$Bx = 0$$

If **B** has an inverse then $x = B^{-1}0 = 0$. But an eigenvector cannot be zero.

Thus, it follows that x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0, or

$$\det(A - \lambda I) = 0$$

This is called the characteristic equation of A. Its roots determine the eigenvalues of A.

Eigenvalues: examples

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$$

$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = ... = \lambda_k$. If that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$
multiplicit 0.3. $0 \quad \lambda - 2$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ \lambda = 2 \text{ is an eigenvector of } \end{vmatrix}$$

Eigenvectors

To each distinct eigenvalue of a matrix \mathbf{A} there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If λ_i is an eigenvalue then the corresponding eigenvector \mathbf{x}_i is the solution of $(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x}_i = \mathbf{0}$

Example 1 (cont.):

$$\lambda = -1: (-1)I - A = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix}$$

$$x_1 - 4x_2 = 0 \Rightarrow x_1 = 4t, x_2 = t$$

$$\mathbf{x}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, t \neq 0$$

$$\lambda = -2: (-2)I - A = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{x}_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 3 \\ 1 \end{bmatrix}, s \neq 0$$

Eigenvectors

Example 2 (cont.): Find the eigenvectors of $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Recall that $\lambda = 2$ is an eigenvector of multiplicity 3.

Solve the homogeneous linear system represented by $(2I - A)\mathbf{x} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$x_1 = s, x_3 = t$$

Let of the form
$$x = \begin{bmatrix} s \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, s and t not both

Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by tr(A), is the sum of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal.

is an eigenvalue of A and A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} .

Properties of Eigenvalues and Eigenvectors

Property 5: If λ is an eigenvalue of A then $k\lambda$ is an eigenvalue of kA where k is any arbitrary scalar.

Property 6: If λ is an eigenvalue of A then λ^k is an eigenvalue of A^k for any positive integer k.

Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of A^T .

Property 9: The product of the eigenvalues (counting multiplicity) of a matrix equals the determinant of the matrix.

Linearly independent eigenvectors

Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues are linearly independent.

Theorem: If λ is an eigenvalue of multiplicity k of an $n \times n$ matrix A then the number of linearly independent eigenvectors of A associated with λ is given by $m = n - r(A - \lambda I)$. Furthermore, $1 \le m \le k$.

Example 2 (cont.): The eigenvectors of $\lambda = 2$ are of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \text{s and } t \text{ not both zero.}$$

 $\lambda = 2$ has two linearly independent eigenvectors