Inverse of a Matrix

Definition of Inverse

The inverse is Defined as $\quad A A^{-1}=A^{-1} A=I$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}? & ? \\ ? & ?\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad\left[\begin{array}{ll}? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

We will find out how to calculate the inverse for 2×2 matrix
But first why is it important?
Because it will allow us to solve equations of the form

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

We will only consider 2×2 Matrix systems
That means simultaneous equations

Why will it help us solve equations?

Because if we can express a system of equations in the form

$$
A x=b
$$

Then we can multiply both sides by the inverse matrix

$$
A^{-1} A x=A^{-1} b
$$

And we can then know the values of X because

$$
A^{-1} A=I
$$

$$
x=A^{-1} b
$$

Recap Multiplication

$$
\begin{aligned}
& \begin{aligned}
&\left(\begin{array}{rrr}
4 & -3 & 2 \\
-6 & 0 & 1
\end{array}\right) \\
&\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)=\binom{8+3+12}{-12+0+6}
\end{aligned}=\binom{23}{-6} \\
& \begin{array}{ll}
4 & 2
\end{array}\binom{6}{5}=(24+10 \quad 4+8)=\left(\begin{array}{ll}
34 & 12
\end{array}\right)
\end{aligned}
$$

Shapes and sizes

Dimensions and compatibility given by the domino rule

Note matrix multiplication is not commutative.
If A is a 3×1 and B is a 1×3 then $A B$ is $3 \times 3 B A$ is 1×1

The multiplicative inverse of a matrix

* This can only be done with SQUARE matrices
* By hand we will only do this for a 2×2 matrix
* Inverses of larger square matrices can be calculated but can be quite time expensive for large matrices, computers are generally used

$$
\begin{aligned}
& \left(\begin{array}{l}
4 \\
E \\
1
\end{array} x_{3}^{8}\right) A=\quad \text { then } A^{-1}=\left(\begin{array}{cc}
0.75 & -2 \\
-0.25 & 1
\end{array}\right) \quad \text { as } A \times A^{-1}=I \\
& \left(\begin{array}{ll}
4 & 8 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
0.75 & -2 \\
-0.25 & 1
\end{array}\right)=\left(\begin{array}{cc}
3-2 & -8+8 \\
0.75-0.75 & -2+3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Finding the Inverse of a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Step-1 First find what is called the Determinant
This is calculated as ad-bc
Step-2 Then swap the elements in the leading diagonal $\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
Step-3 Then negate the other elements

$$
\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Step-4 Then multiply the Matrix by 1 /determinant

$$
\frac{1}{a d-c b}\left[\begin{array}{lr}
d & -b \\
-c & a
\end{array}\right]
$$

Example Find Inverse of A

Step 1 - Calc Determinant

$$
A=\left(\begin{array}{ll}
4 & 8 \\
1 & 3
\end{array}\right) \quad \text { Determinant }(a d-c b)=4 \times 3-8 \times 1=4
$$

Step 2 - Swap Elements on leading diagonal

Step 3 - negate the other elements

Step 4 - multiply by $1 /$ determinant

$$
\text { step2 }\left(\begin{array}{ll}
3 & 8 \\
1 & 4
\end{array}\right)
$$

Find the inverses and check them

$$
\begin{array}{ll}
\mathrm{A}=\left(\begin{array}{ll}
2 & 6 \\
1 & 5
\end{array}\right) & \mathrm{A}^{-1}=\frac{1}{4}\left(\begin{array}{cc}
5 & -6 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1.25 & -1.5 \\
-0.25 & 0.5
\end{array}\right) \\
\mathrm{B}=\left(\begin{array}{cc}
-5 & 20 \\
-1 & 2
\end{array}\right) & B^{-1}=\frac{1}{10}\left(\begin{array}{cc}
2 & -20 \\
1 & -5
\end{array}\right)=\left(\begin{array}{cc}
0.2 & -2 \\
0.1 & -0.5
\end{array}\right) \\
\mathrm{C}=\left(\begin{array}{cc}
2 & 2 \\
0 & -1
\end{array}\right) & \mathrm{C}^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
-1 & -2 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
0.5 & 1 \\
0 & -1
\end{array}\right)
\end{array}
$$

Mano invenses to find and check

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right) \\
& B=\left(\begin{array}{cc}
5 & 10 \\
-1 & 2
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{C}=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)
$$

$$
\mathrm{D}=\left(\begin{array}{cc}
8 & 2 \\
-1 & 0
\end{array}\right)
$$

$$
E=\left(\begin{array}{cc}
2 & -8 \\
-1 & 4
\end{array}\right)
$$

$$
\mathrm{F}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 & -4 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1.5 & -2 \\
-0.5 & 1
\end{array}\right) \\
& \mathrm{B}^{-1}=\frac{1}{20}\left(\begin{array}{cc}
2 & -10 \\
1 & 5
\end{array}\right)=\left(\begin{array}{cc}
0.1 & -0.5 \\
0.05 & 0.25
\end{array}\right) \\
& \mathrm{C}^{-1}=\frac{1}{-1}\left(\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right) \\
& \mathrm{D}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -2 \\
1 & 8
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
0.5 & 4
\end{array}\right) \\
& \text { e found as det }=2 \times 4-(-1 \times-8)=8-8=0 \\
& \mathrm{~F}^{-1}=\frac{1}{1}\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \text { self inverting }
\end{aligned}
$$

Applications of matrices

Because matrices are clever storage systems for numbers there are a large and diverse number of ways we can apply them.

* Matrices are used in to solve equations on computers
- solving equations
* They are used in computer games and multi-media devices to move and change objects in space
- transformation geometry
* We only consider solving equations on Maths1 with using 2×2 matrices

Solving simultaneous equations

We can use our 2×2 matrices to express 2

 simultaneous equations (2 equations about the same 2 variables)* First we must put them in the correct format
* for the variables $x \& y$ the format should be $a x+b y=m$ $c x+d y=n \quad\{$ where $a, b, c, d, m \& n$ are constants\}

Example
Peter and Jane spend $£ 240$ altogether and Peter spends 3 times as much as Jane.
let p what Peter spends and j : what Jane spends

Solving simultaneous equations

We can use our 2×2 matrices to express these simultaneous equations

$$
\left.\begin{array}{ll}
x+y & =240 \\
x-3 y & =0
\end{array}\right\} \quad \text { Becomes in matrix form }
$$

$$
\left.\begin{array}{cc}
\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right) \\
x_{1} \\
x_{2} \\
x_{2} \\
\text { istants } \\
\text { om the } \\
\text { t hand }
\end{array}\right)=\left(\begin{array}{c}
240 \\
\begin{array}{c}
\text { UNKNOWNS } \\
x \sim \times 1 \\
y \sim \times 2
\end{array} \\
\begin{array}{c}
\text { constants } \\
\text { from the } \\
\text { right hand } \\
\text { side }
\end{array}
\end{array}\right.
$$

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{240}{0} \quad \text { Format is } A x=B
$$

To solve this using the matrix we must get rid of it by using its inverse!
First find the inverse $\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)^{-1}=\frac{1}{-4}\left(\begin{array}{cc}-3 & -1 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}0.75 & 0.25 \\ 0.25 & -0.25\end{array}\right)$
now use it on both sides of the equation

$$
\begin{gathered}
\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\binom{240}{0} \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\binom{240}{0} \\
\binom{x_{1}}{x_{2}}=\binom{180}{60}
\end{gathered}
$$

So Answer is $p=180 j=60$

Summary of method

Format the simultaneous equations for variable $x \& y$

$$
\begin{aligned}
& a x+b y=m \\
& c x+d y=n
\end{aligned}
$$

2. Rewrite them in matrix form

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}=\binom{\mathrm{m}}{\mathrm{n}}
$$

3. Find the inverse of the 2×2 matrix

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left(\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right)
$$

4. Solve for the variables x, y by multiplying the right hand side of the equation by the inverse

$$
\binom{\mathrm{x}}{\mathrm{y}}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left(\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right)\binom{\mathrm{m}}{\mathrm{n}}
$$

Solve the following

$$
\begin{array}{ll}
3 x+4 y=5 \\
5 x=7-6 y
\end{array} \quad\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)\binom{x}{y}=\binom{5}{7} \quad \text { Answer } x=-1 y=2 .
$$

$$
x+7 y=1.24 \quad\left(\begin{array}{cc}
1 & 7 \\
-1 & 3
\end{array}\right)\binom{x}{y}=\binom{1.24}{0.76} \quad \text { Answer } x=-0.16 y=0.2
$$

$$
3 y-x=0.76\binom{x}{y}=\frac{1}{10}\left(\begin{array}{cc}
3 & -7 \\
1 & 1
\end{array}\right)\binom{1.24}{0.76}=\frac{1}{10}\binom{3.72-5.32}{1.24+0.76}=\frac{1}{10}\binom{-1.6}{2}=\binom{-0.16}{0.2}
$$

$8 x=3 y-1$

$$
\left(\begin{array}{cc}
8 & -3 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{-1}{-7} \quad \text { Answer } x=-2 y=-5
$$

$$
\binom{\mathrm{x}}{\mathrm{y}}=\frac{1}{11}\left(\begin{array}{cc}
1 & 3 \\
-1 & 8
\end{array}\right)\binom{-1}{-7}=\frac{1}{11}\binom{-1-21}{1-56}=\frac{1}{11}\binom{-22}{-55}=\binom{-2}{-5}
$$

