CONSISTENT AND INCONSISTENT SYSTEM

When the graph of two linear equations are drawn in the coordinate plane they may be related to each other as shown below.

- FIGURE 1.
- $x+y=-2$
- $x-2 y=7$
- The graphs intersect in exactly one point.

- FIGURE 2.
- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

The graphs in figures 1 and 2 have at least one point in common. The system are said to be CONSISTENT.

- FIGURE 2.
- FIGURE 1.
- $x+y=-2$
- $x-2 y=7$
- The graphs intersect in exactly one point.
- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

The graphs in figures 3 have NO point in common. This system is said to be INCONSISTENT.

- FIGURE 1.
- $x+y=-2$
- $x-2 y=7$
- The graphs intersect in exactly one point.
- FIGURE 2.

- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

DEFINITIONS

- A CONSISTENT SYSTEM of equations or inequalities is one whose solution set contains at least one ordered pair.
- An INCONSISTENT SYSTEM of equations or inequalities is one whose solution set is the empty set.

Write the equations of the system below in slopeintercept form.

- FIGURE 1.
- $x+y=-2$
- $x-2 y=7$
- The graphs intersect in exactly one point.
- FIGURE 2.

- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.
- System 1
- $x+y=-2$ (1)
- $x-2 y=7$
(2)
- Slope-intercept form
- $y=-x-2 \quad$ (1)
- $y=1 / 2 x-7 / 2$ (2)
- System 3
- $3 x+y=2$
- $3 x+y=7$
- Slope-intercept form
- $y=-3 x+2$
- $y=-3 x+7$
- System 1
- $x+y=-2$ (1)
- $x-2 y=7$
(2)
- Slope-intercept form
- $y=-x-2$
- $y=1 / 2 x-7 / 2$ (2)
- For system 1, exactly one ordered pair satisfies both equations. For this system,
- $m_{1}=-1 \& m_{2}=1 / 2$
- Thus, $m_{1} \neq m_{2}$
- System 2
- $y=2 x+3 \quad(1)$
- $2 y=4 x+6$ (2)
- Slope-intercept form
- $y=2 x+3 \quad$ (1)
- $y=4 / 2 x-6 / 2 \quad$ (2)
- For system 2, every ordered pair that satisfies equation 1 also satisfies Equation 2. The system is DEPENDENT. For this system
- $m_{1}=2 \& m_{2}=2$
- Also , $b_{1}=3 \& b_{2}=3$
- System 3
- $3 x+y=2$
- $3 x+y=7$
- Slope-intercept form
- $y=-3 x+2$
- $y=-3 x+7$
- For system 3, no ordered pair satisfies both equations. For this system,
- $m_{1}=-3 \& m_{2}=-3 \quad$ Also, $b_{1}=2 \& b_{2}=7$
- Thus, $m_{1}=m_{2}$ and $b_{1} \neq b_{2}$.

CONSISTENT \& DEPENDENT

CONSISTENT \& INDEPENDENT

- FIGURE 1.
- $x+y=-2$
- $x-2 y=7$
- The graphs intersect in exactly one point.
- FIGURE 2.

- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

SUMMARY

Properties of a Linear System of Two Equations

$$
y=m_{1} x+b_{1} \text { and } y=m_{2}+b_{2} .
$$

DESCRIPTION	Slopes and y-intercepts	Graphs	Solutions
CONSISTENT	$m_{1} \neq m_{2}$	Intersect in one point	One
DEPENDENT	$m_{1}=m_{2}$ and $\mathbf{b}_{1}=b_{2}$	Coincide	Infinite number
INCONSISTENT	$m_{1}=m_{2}$ and $b_{1} \neq b_{2}$	Parallel	None

Use the graph of each system to classify it as INCONSISTENT, CONSISTENT, DEPENDENT.

INCONSISTENT

Use the graph of each system to classify it as INCONSISTENT, CONSISTENT, DEPENDENT.

Use the graph of each system to classify it as INCONSISTENT, CONSISTENT, DEPENDENT.

Use the graph of each system to classify it as INCONSISTENT, CONSISTENT, DEPENDENT.

OTHER WAY OF DETERMINING WHETHER THE SYSTEMS ARE CONSISTENT,INCONSSITENT, or DEPENDENT.
\square Given $a_{1} x+b_{1} y=c_{1}$ and $a_{2} x+b_{2} y=c_{2}$. \square The system is DEPENDENT if
$\square a_{1}: a_{2}=b_{1}: b_{\mathbf{2}}=c_{1}: c_{2}$
\square One equation is a multiple to the other.
\square Graphically, the lines coincide.

CONSISTENT \& DEPENDENT

CONSISTENT \& INDEPENDENT

- FIGURE 2.
- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

INCONSISTENT

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

OTHER WAY OF DETERMINING WHETHER THE SYSTEMS ARE CONSISTENT,INCONSSITENT, or DEPENDENT.
\square Given $a_{1} x+b_{1} y=c_{1}$ and $a_{2} x+b_{2} y=c_{2}$. \square The system is INCONSISTENT if
$\square \mathbf{a}_{1}: \mathrm{a}_{2}=\mathbf{b}_{\mathbf{1}}: \mathbf{b}_{\mathbf{2}} \neq \mathrm{c}_{1}: \mathbf{c}_{\mathbf{2}}$
\square Graphically, the lines are parallel.

CONSISTENT \& DEPENDENT

CONSISTENT \& INDEPENDENT

- FIGURE 2.
- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

OTHER WAY OF DETERMINING WHETHER THE SYSTEMS ARE CONSISTENT,INCONSSITENT, or DEPENDENT.

Given $a_{1} x+b_{1} y=c_{1}$ and $a_{2} x+b_{2} y=c_{2}$. \square The system is CONSISTENT if neither holds.
$\square a_{1}: a_{2}=b_{1}: b_{2}=c_{1}: c_{2}$
$\square \mathbf{a}_{1}: a_{2} \neq \mathbf{b}_{1}: \mathbf{b}_{\mathbf{2}}$
\square Graphically, the lines are intersect.

CONSISTENT \& DEPENDENT

CONSISTENT \& INDEPENDENT

- FIGURE 2.
- $y=2 x+3$
- $2 y=4 x+6$
- The graphs coincide; that is, they have an infinite number of points in common.

- FIGURE 3.
$\left\{\begin{array}{l}3 x+y=2 \\ 3 x+y=7\end{array}\right.$
- The graphs are parallel; that is, they have no points in common.

