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• V, W vector spaces with same fields F. 

• Definition: T:VW s.t. T(ca+b)=c(Ta)+Tb 
for all a,b in V. c in F. Then T is linear. 

• Property: T(O)=O. T(ca+db)=cT(a)+dT(b), a,b in V, c,d in F. 
(equivalent to the def.) 

• Example: A mxn matrix over F. Define T by Y=AX. T:FnFm 
is linear.  

• Proof: T(aX+bY)= A(aX+bY)=aAX+bAY = aT(X)+bT(Y). 



• U:F1xm ->F1xn defined by U(a)=aA is linear. 

• Notation: Fm=Fmx1 

• Remark: L(Fmx1,Fnx1) is same as Mmxn(F).  

• For each mxn matrix A we define a unique linear 
transformation Tgiven by T(X)=AX.  

• For each a linear transformation T has A such that T(X)=AX. 
We will discuss this in section 3.3. 

• Actually the two spaces are isomorphic as vector spaces.  

• If m=n, then compositions correspond to matrix 
multiplications exactly.  



• Example: T(x)=x+4. F=R. V=R. This is not linear.  

• Example: V = {f polynomial:FF}  
T:V V defined by T(f)=Df. 
 

 

• V={f:RR continuous}   



• Null space of T :VW:= { v in V| Tv = 0}.  

• Rank T:= dim{Tv|v in V} in W. = dim range T.  

• Null space is a vector subspace of V.  

• Range T is a vector subspace of W.  

• Example: 

 

 

• Null space z=t=0. x+2y=0 dim =1  

• Range = W. dim = 3 

 



• Theorem: rank T + nullity T = dim V. 

•Proof: a1,..,ak basis of N. dim N = k. Extend to a 

basis of V: a1,..,ak, ak+1,…,an.  

• We show T ak+1,…,Tan is a basis of R. Thus n-k = dim R.  n-
k+k=n. 

• Spans R: 

 

• Independence: 



• Theorem 3: A mxn matrix.  
  Row rank A = Column rank A. 

• Proof:  

• column rank A = rank T where T:RnRm is defined by 
Y=AX. ei goes to i-th column. So range is spaned by 
column vectors.  

• rankT+nullityT=n by above theorem.  

• column rank A+ dim S = n where  
S={X|AX=O} is the null space.  

• dim S= n - row rank A (Example 15 Ch. 2 p.42)  

• row rank = column rank. 

 



•  Amxn. S  solution space. R r-r-e matrix  

• r = number of nonzero rows of R. 

• RX=0 k1<k2<…<kr. J= {1,..,n}- {k1,k2,…,kr}. 

 

 

 
• Solution spaces parameter u1,…,un-r. 

• Or basis Ej given by setting uj =1 and other ui= 0 
and xki= cij. 



ALGEBRA OF LINEAR 
TRANSFORMATIONS 

• Linear transformations can be added, and multiplied 
by scalars. Hence they form a vector space themselves. 

• Theorem 4: T,U:VW linear.  

• Define T+U:VW by (T+U)(a)=T(a)+U(a). 

• Define cT:VW by cT(a)=c(T(a)).  

• Then they are linear transformations. 



• Definition: L(V,W)={T:VW| T is linear}.  

• Theorem 5: L(V,W) is a finite dim vector space if so are 
V,W. dimL=dimVdimW.  

• Proof: We find a basis:  

 

• Define a linear transformation VW: 

 

 

 

• The basis: 



• Spans: T:VW. 

• We show  

U(a j ) = Ap,qq=1

n

å
p=1

m

å E p,q
(a j )

= ( Ap,qq=1

n

å
p=1

m

å d j ,q)( b p)

= Apj
p=1

m

å b p = Ta j , j =1,..,m

T = U



• Independence 

• Suppose 

 

 

 

 

• Example: V=Fm W=Fn. Then  

• Mmxn(F) is isomorphic to L(Fm,Fn) as vector spaces. Both 
dimensions equal mn. 

• Ep,q is the mxn matrix with 1 at (p,q) and 0 everywhere 
else.  

• Any matrix is a linear combination of Ep,q. 



• Theorem. T:VW, U:WZ.  
UT:VZ defined by UT(a)= U(T(a)) is linear.  

• Definition: Linear operator T:VV. 

• L(V,V) has a multiplication. 
• Define T0=I, Tn=T…T. n times. 
• Example: A mxn matrix B pxm matrix  

T defined by T(X)=AX. U defined by U(Y)=BY. 
Then UT(X) = BAX. Thus  
UT is defined by BA if T is defined by A and U 
by B.  

• Matrix multiplication is defined to mimic 
composition.  


