LINEAR TRANSFORMATIONS

LINEAR TRANSFORMATIONS

- V, W vector spaces with same fields F .
- Definition: $\mathrm{T}: V \rightarrow \mathrm{~W}$ s.t. $\mathrm{T}(\mathrm{ca+b})=\mathrm{c}(\mathrm{Ta})+\mathrm{Tb}$ for all a, b in V. c in F. Then T is linear.
- Property: $T(O)=O . T(c a+d b)=c T(a)+d T(b), a, b$ in V, c, d in F. (equivalent to the def.)
- Example: A mxn matrix over F. Define T by $Y=A X . T: F^{n} \rightarrow F^{m}$ is linear.
- Proof: $T(a X+b Y)=A(a X+b Y)=a A X+b A Y=a T(X)+b T(Y)$.
- $U: F^{1 \times m}->F^{1 \times n}$ defined by $U(a)=a A$ is linear.
- Notation: Fm=Fmx
- Remark: $L\left(F^{m \times 1}, F^{n x 1}\right)$ is same as $M_{m \times n}(F)$.
- For each mxn matrix A we define a unique linear transformation Tgiven by $\mathrm{T}(\mathrm{X})=\mathrm{AX}$.
- For each a linear transformation T has A such that $T(X)=A X$. We will discuss this in section 3.3.
- Actually the two spaces are isomorphic as vector spaces.
- If $m=n$, then compositions correspond to matrix multiplications exactly.
- Example: $T(x)=x+4 . F=R . V=R$. This is not linear.
- Example: $V=\{f$ polynomial: $F \rightarrow F\}$ $\mathrm{T}: \vee \rightarrow \vee$ defined by $T(f)=D f$.
- $V=\{f: R \rightarrow R$ continuous $\}$

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k} \\
D f(x) & =c_{1}+2 c_{2} x+\cdots+k c_{k} x^{k-1}
\end{aligned}
$$

$$
T f(x)=\int_{0}^{x} f(t) d t
$$

woil space of $T: V \rightarrow W:=\{v$ in $\vee \mid T v=0\}$.

- Rank $T:=\operatorname{dim}\{T \vee \mid v$ in $V\}$ in W. = dim range T.
- Null space is a vector subspace of \vee.
- Range T is a vector subspace of W.
- Example:

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- Null space $z=\dagger=0 . x+2 y=0 \operatorname{dim}=1$
- Range $=$ W. $\operatorname{dim}=3$
- Theorem: rank T + nullity T = dim V.
- Proof: a_{1}, \ldots, a_{k} basis of N. $\operatorname{dim} N=k$. Extend to a basis of V : $a_{1}, . ., a_{k}, a_{k+1}, \ldots, a_{n}$.
- We show $T a_{k+1}, \ldots, T a_{n}$ is a basis of R. Thus $n-k=\operatorname{dim} R$. $n-$ $k+k=n$.
- Spans R:
- Independence:

$$
\begin{array}{cccc}
v & = & x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
T v & = & x_{k+1} T\left(\alpha_{k+1}\right)+\cdots x_{n} T\left(\alpha_{n}\right) \\
& \sum_{i=k+1}^{n} c_{i} T \alpha_{i} & = & 0 \\
& T\left(\sum_{n=k+1}^{n} c_{i} \alpha_{i}\right) & = & 0 \\
& \sum_{i=k+1}^{n} c_{i} \alpha_{i} & \in & N \\
& \sum_{i=k+1}^{n} c_{i} \alpha_{i} & = & \sum_{i=1}^{k} c_{i} \alpha_{i} \\
c_{i} & = & 0, i=k+1, \ldots, n
\end{array}
$$

- Theorem 3: A mxn matrix.

Row rank $A=$ Column rank A.

- Proof:
- column rank $A=$ rank T where $T: R^{n} \rightarrow R^{m}$ is defined by $Y=A X . e_{i}$ goes to i-th column. So range is spaned by column vectors.
- rankT+nullityT=n by above theorem.
- column rank $A+\operatorname{dim} S=n$ where $S=\{X \mid A X=O\}$ is the null space.
- $\operatorname{dim} \mathrm{S}=\mathrm{n}$ - row rank A (Example 15 Ch .2 p.42)
- row rank = column rank.
- $A^{m \times n}$. S solution space. R r-r-e matrix
- $r=$ number of nonzero rows of R.
- $R X=0 k_{1}<k_{2}<\ldots<k_{r} . J=\{1, \ldots, n\}-\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$.

$$
\begin{array}{ccccc}
x_{k_{1}} & & & & + \\
& x_{k_{2}} & & & \sum_{j=1}^{n-r} C_{1 j} u_{j}
\end{array}=0
$$

- Solution spaces parameter u_{1}, \ldots, U_{n-r}.
- Or basis E_{j} given by setting $\mathrm{u}_{\mathrm{j}}=1$ and other $\mathrm{u}_{\mathrm{i}}=0$ and $\mathrm{x}_{\mathrm{k}}=\mathrm{c}_{\mathrm{ij}}$.

ALGEBRA OF LINEAR TRANSFORMATIONS

- Linear transformations can be added, and multiplied by scalars. Hence they form a vector space themselves.
- Theorem 4: $\mathrm{T}, \mathrm{U}: \mathrm{V} \rightarrow \mathrm{W}$ linear.
- Define $T+U: V \rightarrow W$ by $(T+U)(a)=T(a)+U(a)$.
- Define $c T: V \rightarrow W$ by $c T(a)=c(T(a))$.
- Then they are linear transformations.
vetinition: $L(V, W)=\{T: V \rightarrow W \mid T$ is linear $\}$.
- Theorem 5: $L(V, W)$ is a finite dim vector space if so are V, W. $\operatorname{dim} L=\operatorname{dim} V \operatorname{dim} W$.
- Proof: We find a basis:

$$
\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset V
$$

- Define a linear transformation $\mathrm{V} \rightarrow \mathrm{W}$:

$$
\mathcal{B}^{\prime}=\left\{\beta_{1}, \ldots, \beta_{m}\right\} \subset W
$$

- The basis:

$$
E^{p, q}\left(\alpha_{i}\right)=\left\{\begin{array}{rl}
0, & i \neq q \\
\beta_{p}, & i=q
\end{array}=\delta_{i q} \beta_{p}, \quad 1 \leq p \leq m, 1 \leq q \leq n\right.
$$

$$
\begin{array}{ccc}
E^{1,1}, & \ldots, & E^{1, n} \\
\vdots & \ddots & \vdots \\
E^{m, 1}, & \ldots, & E^{m, n}
\end{array}
$$

- We show

$$
T \alpha_{j}=\sum_{p=1}^{m} A_{p j} \beta_{p}
$$

$$
\begin{aligned}
& T=U=\sum_{p=1}^{m} \sum_{q=1}^{n} A_{p q} E^{p, q} \\
& U\left(\quad{ }_{j}\right)={ }_{p_{p=1}^{p}}^{m}{ }_{q=1}^{n} A_{p, q} E^{p, q}\left(\quad j_{j}\right) \\
& ={ }_{p=1}^{m}\left({ }_{\quad}^{n=1} A_{p, q}{ }_{j, q}\right)\left({ }_{p}\right) \\
& ={ }_{p=1}^{m} A_{p j}=T_{j}, j=1, . ., m \\
& T=U
\end{aligned}
$$

- miplependence

- Suppose $U=\sum_{p} \sum_{q} A_{p q} E^{p, q}=0$

$$
\begin{array}{ccc}
U \alpha_{j} & = & 0 \\
\sum_{p} A_{p j} \beta_{p} & = & 0 \\
\left\{\beta_{p}\right\} & & \text { independent }
\end{array}
$$

- Example: $\mathrm{V}=\mathrm{Fm} \mathrm{W}=\mathrm{F} \quad A_{p j} \quad=\quad 0$ for all p, j
- $M_{m \times n}(F)$ is isomorphic to $L\left(F^{m}, \mathrm{~F}^{n}\right)$ as vector spaces. Both dimensions equal mn .
- $\mathrm{E}^{p, q}$ is the $m \times n$ matrix with 1 at (p, q) and 0 everywhere else.
- Any matrix is a linear combination of $E^{p, a}$.
meorem. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}, \mathrm{U}: \mathrm{W} \rightarrow \mathrm{Z}$.
$U T: V \rightarrow Z$ defined by $U T(a)=U(T(a))$ is linear.
- Definition: Linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$.
- L(V,V) has a multiplication.
- Define $T^{0}=1, T^{n}=T . . . T . n$ times.
- Example: A mxn matrix B pxm matrix T defined by $T(X)=A X . U$ defined by $U(Y)=B Y$. Then $U T(X)=B A X$. Thus
UT is defined by BA if T is defined by A and U by B .
- Matrix multiplication is defined to mimic composition.

