Vector spaces

Vector spaces, subspaces \& basis

A vector space (V,F, +, .)

- F a field
- V a set (of objects called vectors)
- Addition of vectors (commutative, associative)
- Scalar multiplicatioı $\exists 0, \forall \alpha \in V, \alpha+0=0$.

$$
\forall \alpha \exists!-\alpha, \alpha+(-\alpha)=0 .
$$

$$
1 \alpha=\alpha,\left(c_{1} c_{2}\right) \alpha=c_{1}\left(c_{2} \alpha\right), c(\alpha+\beta)=c \alpha+c \beta,\left(c_{1}+c_{2}\right) \alpha=c_{1} \alpha+c_{2} \alpha
$$

Examples

$$
\begin{aligned}
& F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\} \\
& \left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& c\left(x_{1}, \ldots, x_{n}\right) \quad=\quad\left(c x_{1}, \ldots, c x_{n}\right)
\end{aligned}
$$

- Other laws are easy to show

$$
\begin{aligned}
& \quad \mathbf{C}^{n},(Q+\sqrt{2} Q)^{n}, Z_{p}^{n} \\
& F^{m \times n}=\left\{\left\{A_{i j}\right\} \mid A_{i j} \quad F, i=1, \ldots, m j=1, \ldots, n\right\}= \\
& F^{m n}=\left\{\left(A_{1}, A_{12}, \ldots, A_{m 1}, A_{m}\right) \mid A_{i j} \quad F\right\}
\end{aligned}
$$

- This is just written differently
- The space of functions: A a set, Fa field

$$
\{f: A \rightarrow F\},(f+g)(s)=f(s)+g(s),(c f)(s)=c(f(s))
$$

- If A is finite, this is just $\mathrm{F}^{|\mathrm{A}|}$. Otherwise this is infinite dimensional.
- The space of polynomial functions
$\left\{f: F \rightarrow F \mid f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}, c_{i} \in F\right\}$
- The following are different.

$$
\begin{array}{ccc}
V=\mathbf{C}=\{x+i y \mid x, y \in \mathbf{R}\} & , \quad F=\mathbf{R} \\
V=\mathbf{C} & , & F=\mathbf{C} \\
V=\mathbf{C} & , & F=\mathbf{Q}
\end{array}
$$

Subspaces

- V a vector space of a field F. A subspace W of V is a subset W s.t. restricted operations of vector addition, scalar multiplication make W into a vector space.
- +:WxW -> W, •:FxW -> W.
- W nonempty subset of V is a vector subspace iff for each pair of vectors a, b in W , and c in $\mathrm{F}, \mathrm{ca}+\mathrm{b}$ is in W . (iff for all a, b in $\mathrm{W}, \mathrm{c}, \mathrm{d}$ in $\mathrm{F}, \mathrm{ca+db}$ is in W.)
- Example:

$$
\mathbf{R}^{n-1} \subset \mathbf{R}^{n},\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right) \mid x_{i} \in \mathbf{R}\right\}
$$

$$
S_{m \times m}=\left\{A \in F^{m \times m} \mid A^{t}=A\right\} \subset F^{m \times m}
$$

is a vector subspace with field F .

- Solution spaces: Given an mxn matrix A

$$
W=\left\{X \in F^{n} \mid A X=0\right\} \subset F^{n}
$$

$\forall X, Y \in W c \in F, A(c X+Y)=c A X+A Y=0 . \mapsto c X+Y \in W$.

- The intersection of a collection of vector subspaces is a vector subspace is not.

$$
W=\{(x, y, z) \mid x=0 \text { or } y=0\}
$$

Span(S)

$$
\operatorname{Span}(S)=\left\{\sum_{i} c_{i} \alpha_{i} \mid \alpha_{i} \in S, c_{i} \in F\right\} \subset V
$$

- Theorem 3. $\mathrm{W}=\stackrel{i}{S} \operatorname{pan}(\mathrm{~S})$ is a vector subspace and is the set of all linear combinations of vectors in S .
- Proof:

$$
\begin{aligned}
& \quad W, c \quad F \\
& =x_{11}+\cdots+x_{m} \\
& =y_{1}+\cdots+y_{n n} \\
& c+=x_{11}+\cdots+x_{m m}+y_{11}+\cdots+y_{n n}
\end{aligned}
$$

- Sum of subsets $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ of V

$$
S_{1}+S_{2}+\ldots+S_{k}=\left\{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k} \mid \alpha_{i} \in S_{i}\right\}
$$

- If S_{i} are all subspaces of V, then the above is a subspace.
- Example: $y=x+z$ subspace:
$\hat{\operatorname{Span}}((1,1,0),(0,1,1))^{\boldsymbol{R}}=\left\{c\left(\mathbf{1}^{\boldsymbol{1}}, 1,0\right)+d(0,1,1) \mid c, d \in \mathbf{R}\right\}=\{(c, c+d, \hat{d}) \hat{c}, d \in \mathbf{R}\}$
- Column space of A : the space of column vectors of A.

Linear independence

- A subset S of V is linearly dependent if
$\exists \alpha_{1}, \ldots, \alpha_{n} \in S, c_{1}, \ldots, c_{n} \in F$ not all 0 s.t. $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$.
- A set which is not linearly dependent is called linearly independent:
The negation of the above statement
$\forall \alpha_{1}, \ldots, \alpha_{n} \in S$, there are no $c_{1}, \ldots, c_{n} \in F$ not all 0 such that $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$.)
$\forall \alpha_{1}, \ldots, \alpha_{n} \in S$, if $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$, then $c_{i}=0, i=1, \ldots, n$

$$
\begin{gathered}
(1,1),(0,1), c_{1}(1,1)+c_{2}(0,1)=\left(c_{1}, c_{1}+c_{2}\right)=(0,0) \mapsto c_{1}=0, c_{2}=0 \\
c_{1}(1,1,1)+c_{2}(2,2,1)+c_{3}(3,3,2)=0 \text { for } c_{1}=1, c_{2}=1, c_{3}=-1
\end{gathered}
$$

Basis

- A basis of V is a linearly independent set of vectors in V which spans V.
- Example: F^{n} the standard basis
$\epsilon_{1}=(1,0, \ldots, 0), \epsilon_{2}=(0,1, \ldots, 0), \ldots, \epsilon_{n}=(0,0, \ldots, 1)$
- V is finite dimensional if there is a finite basis. Dimension of V is the number of elements of a basis. (Independent of the choice of basis.)
- A proper subspace W of V has $\operatorname{dim} \mathrm{W}$ < dim V. (to be proved)

Example: P invertible nxn matrix. $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$ columns form a basis of $\mathrm{F}^{\mathrm{nx1}}$.

- Independence: $\mathrm{x}_{1} \mathrm{P}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}=0, \mathrm{PX}=0$. Thus $\mathrm{X}=\mathrm{o}$.
- Span $\mathrm{F}^{\mathrm{nx} 1}$: Y in $\mathrm{F}^{\mathrm{nxx}}$. Let $\mathrm{X}=\mathrm{P}^{-1} \mathrm{Y}$. Then $\mathrm{Y}=\mathrm{PX}$. $\mathrm{Y}=$ $x_{1} \mathrm{P}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}$.
- Solution space of $\mathrm{AX}=0$. Change to $\mathrm{RX}=0$.

$$
\begin{array}{ccccc}
x_{k_{1}} & & & & +\sum_{j=1}^{n-r} C_{1 j} u_{j}
\end{array}=0
$$

- Basis $\mathrm{E}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}}=1$, other $\mathrm{u}_{\mathrm{k}}=0$ and solve above

$$
x_{k_{i}}=-c_{i j}, \mapsto\left(-c_{1 j},-c_{2 j}, \ldots,-c_{r j}, 0, . ., 1, . .0\right)
$$

- Thus the dimension is n-r:
- Infinite dimensional example:
- V: $=\left\{f \mid f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}\right\}$.
- Given any finite collection g_{1}, \ldots, g_{n} there is a maximum degree k . Then any polynomial of degree larger than k can not be written as a linear combination.
- Theorem 4: V is spanned by finite and number is $\leq \mathrm{m}$.
- Proof: To prove, we show every set S with more than mectors is linearly dependent. Let be elements of S with $n>m$.

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}
$$

$$
\sum_{i=1}^{n} x_{j} \alpha_{j}=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} A_{i j} \beta_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right) \beta_{i}
$$

- A is mxn matrix. Theorem 6 , Ch 1 , we can solve for $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ not all zero for

$$
\sum_{j=1}^{n} A_{i j} x_{j}=0, i=1, \ldots, n
$$

- Thus

$$
x_{1} \alpha_{1}+\ldots+x_{n} \alpha_{n}=0
$$

Corollary. V is a finite d.v.s. Any two bases have the same number of elements.

- Proof: B, B^{\prime} basis. Then $\left|B^{\prime}\right| \leq|B|$ and $|B| \leq\left|B^{\prime}\right|$.
- This defines dimension.
- $\operatorname{dim} \mathrm{F}^{\mathrm{n}}=\mathrm{n} . \operatorname{dim} \mathrm{F}^{\mathrm{mxn}}=\mathrm{mn}$.
- Lemma. S a linearly independent subset of V. Suppose that b is a vector not in the span of S. Then $S \cup\{b\}$ is independent.
- Proof:

Then $\mathrm{k}=\mathrm{o}$. Otherwise b is in the span. Thus, and c_{i} are alı $c_{1} \alpha_{1} \alpha_{1}+\cdots+c_{m} \alpha_{m}=0$.

- Theorem 5. If W is a subspace of V, every linearly independent subset of W is finite and is a part of a basis of W.
- W a subspace of V. $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$.
- A set of linearly independent vectors can be extended to a basis.
- A nxn-matrix. Rows (respectively columns) of A are independent iff A is invertible.
$(->)$ Rows of A are independent. Dim Rows A = n. Dim Rows r.r.e R of $A=n$. R is $I->A$ is inv.
(<-) $A=B . R$. for r.r.e form R. B is inv. $A B^{-1}$ is inv. R is inv. $R=I$. Rows of R are independent. Dim Span $R=n$. Dim Span A=n. Rows of A are independent.

- Theorem 6.

$\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)=\operatorname{dim} \mathrm{W}_{1}+\operatorname{dim} \mathrm{W}_{2}-\operatorname{dim} \mathrm{W}_{1} \cap \mathrm{~W}_{2}$.

- Proof:
- $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$ has basis $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}} . \mathrm{W}_{1}$ has basis $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}} . \mathrm{W}_{2}$ has basis $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$.
- $\mathrm{W}_{1}+\mathrm{W}_{2}$ is spanned by $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$.
- There are also independent.
- Suppose

$$
\sum_{i=1}^{l} x_{i} a_{i}+\sum_{j=1}^{m} y_{j} b_{j}+\sum_{k=1}^{n} z_{k} c_{k}=0
$$

- Then

$$
\begin{aligned}
& \sum_{k=1}^{n} z_{k} c_{k}=-\sum_{i=1}^{l} x_{i} a_{i}-\sum_{j=1}^{m} y_{j} b_{j} \\
& \sum_{k=1}^{n} z_{k} c_{k} \in W_{1} \text { and } \in W_{2} \quad z_{k=1}^{n} z_{k} c_{k}=d_{i=1}^{l} a_{i}
\end{aligned}
$$

- By independence $\mathrm{z}_{\mathrm{k}}=\mathrm{o} . \mathrm{x}_{\mathrm{i}}=\mathrm{o}, \mathrm{y}_{\mathrm{j}}=\mathrm{o}$ also.

Coordinates

- Given a vector in a vector space, how does one name it? Think of charting earth.
- If we are given F^{n}, this is easy? What about others?
- We use ordered basis:

One can write any vector uniquely

$$
\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}
$$

$$
\alpha=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}
$$

Thus,we name

$$
\alpha \mapsto\left(x_{1}, \ldots, x_{n}\right) \in F^{n} \quad X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=[\alpha]_{\mathcal{B}}
$$

Coordinate (nxı)-matrix (n-tuple) of a vector.
For standard basis in F^{n}, coordinate and vector are the same.

- This sets up a one-to-one correspondence between V and F^{n}.
- Given a vector, there is unique n-tuple of coordinates.
- Given an n-tuple of coordinates, there is a unique vector with that coordinates.
- These are verified by the properties of the notion of bases. (See page 50)

Coordinate change?

- If we choose different basis, what happens to the coordinates?
- Given two bases
- Write

$$
\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \mathcal{B}^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\}
$$

$$
\begin{array}{rcc}
& & \alpha_{j}^{\prime}=\sum_{i=1}^{n} P_{i j} \alpha_{i} \\
\alpha & = & \sum_{j=1} x_{j} \alpha_{j}=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
= & \sum_{j=1}^{n} x_{j}^{\prime} \alpha_{j}^{\prime}=\sum_{j=1}^{n} x_{j}^{\prime} \sum_{i=1}^{n} P_{i j} \alpha_{i} \\
& = & \sum_{j=1}^{n} \sum_{i=1}^{n}\left(P_{i j} x_{j}^{\prime}\right) \alpha_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} P_{i j} x_{j}^{\prime}\right) \alpha_{i} . \\
x_{i} & = & \sum_{j=1}^{n} P_{i j} x_{j}^{\prime}
\end{array}
$$

- $\mathrm{X}=\mathrm{o}$ iff $\mathrm{X}^{\prime}=0$ Theorem 7,Chı, P is invertible
- Thus, $\mathrm{X}=\mathrm{PX}, \mathrm{X}^{\prime}=\mathrm{P}^{-1} \mathrm{X}$.

$$
[\alpha]_{\mathcal{B}}=P[\alpha]_{\mathcal{B}^{\prime}},[\alpha]_{\mathcal{B}^{\prime}}=P^{-1}[\alpha]_{\mathcal{B}},
$$

- Example $\{(\mathbf{1}, \mathrm{o}),(\mathrm{o}, 1)\},\{(1, \mathrm{i}),(\mathrm{i}, 1)\}$
- $(1, i)=(1,0)+i(0,1)$ $(\mathrm{i}, 1)=\mathrm{i}(1, \mathrm{o})+(\mathrm{o}, 1) \quad P=\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right), P^{-1}=\left(\begin{array}{cc}1 / 2 & -i / 2 \\ -i / 2 & 1 / 2\end{array}\right)$,
- $(\mathrm{a}, \mathrm{b})=\mathrm{a}(1, \mathrm{o})+\mathrm{b}(\mathrm{l}, \mathrm{o}):(\mathrm{a}, \mathrm{b})_{B}=(\mathrm{a}, \mathrm{b})$
- $(\mathrm{a}, \mathrm{b})_{B^{\prime}}=\mathrm{P}^{-1}(\mathrm{a}, \mathrm{b})=((\mathrm{a}-\mathrm{ib}) / 2,(-\mathrm{ia}+\mathrm{b}) / 2)$.
- We check that (a-ib)/2x(1,i)+ $(-i a+b) / 2 x(i, 1)=(a, b)$.

