Directional Derivative

Directional derivative of ϕ in the direction of a is

$$
\frac{d \phi}{d s}=\underset{\sim}{a \cdot g r a d \phi}
$$

where $\underset{\sim}{a}=\frac{d \underset{\sim}{r}}{\mid d r}$,
which is a unit vector in the direction of $d r$.

Unit Normal Vector

Equation $\phi(x, y, z)=$ constant is a surface equation. Since $\phi(x, y, z)=$ constant, the derivative of $\phi \phi \stackrel{\text { is zero; i.e. }}{=} \underset{\sim}{r} . \operatorname{grad} \phi=0$
$\Rightarrow|d \underset{\sim}{r}||\operatorname{grad} \phi| \cos \theta=0$
$\Rightarrow \cos \theta=0$

$$
\Rightarrow \theta=90^{\circ}
$$

- This shows that when $\phi(x, y, z)=$ constant, $\operatorname{grad} \phi \perp d r$.

- Vector $\operatorname{grad} \phi=\nabla \phi$ is called normal vector to the surface $\phi(x, y, z)=$ constant

Unit normal vector is denoted by

$$
\underset{\sim}{n}=\frac{\nabla \phi}{|\nabla \phi|} .
$$

Example:

Calculate the unit normal vector at $(-1,1,1)$ for $2 y z+x z+x y=0$.

Given

Solution

$$
\begin{aligned}
& \nabla \phi=(z+y) \underset{\sim}{i}+(2 z+x) \underset{\sim}{j}+(2 y+x) \underset{\sim}{r} . \\
& \begin{aligned}
& \operatorname{At}(-1,1,1), \quad \nabla \phi=(1+1) \underset{\sim}{i}+(2-1) \underset{\sim}{j}+(2-1) k \\
&=2 \underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k}
\end{aligned} \\
& \text { and }|\nabla \phi|=\sqrt{4+1+1}=\sqrt{6} .
\end{aligned}
$$

\therefore The unit normal vector is

$$
\underset{\sim}{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{2 \underset{\sim}{i}+\underset{\sim}{j}+k}{\sqrt{6}}=\frac{1}{\sqrt{6}}(2 \underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k})
$$

