Elementary Vector Analysis

Definition 2.1 (*Scalar* and *vector*)*Scalar* is a quantity that has magnitude but not direction.

For instance mass, volume, distance

Vector is a directed quantity, one with both magnitude and direction.

For instance acceleration, velocity, force

We represent a vector as an arrow from the origin *O* to a point *A*.

The length of the arrow is the magnitude of the vector written as $|\vec{oA}|$ or $|\vec{a}|$.

Basic Vector System

Unit vectors
$$\underline{i}, \underline{j}, \underline{k}$$

- Perpendicular to each other
- In the positive directions of the axes
- have magnitude (length) 1

Define a *basic vector system* and form a *right-handed set*, i.e

Magnitude of vectors

Let P = (x, y, z). Vector $\overrightarrow{OP} = p$ is defined by $\overrightarrow{OP} = p = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ = [x, y, z]

with magnitude (length)

$$|\overrightarrow{OP}| = |\underbrace{p}_{\sim}| = \sqrt{x^2 + y^2 + z^2}$$

Calculation of Vectors

1. Vector Equation

Two vectors are equal if and only if the corresponding components are equals

Let $\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$ and $\underline{b} = b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k}$. Then

$$\underline{a} = \underline{b} \iff a_1 = b_1, \ a_2 = b_2, \ a_3 = b_3$$

2. Addition and Subtraction of Vectors

$$\underline{a} \pm \underline{b} = (a_1 \pm b_1)\underline{i} + (a_2 \pm b_2)\underline{j} + (a_3 \pm b_3)\underline{k}$$

3. Multiplication of Vectors by Scalars If α is a scalar, then $\alpha \underline{b} = (\alpha b_1)\underline{i} + (\alpha b_2)\underline{j} + (\alpha b_3)\underline{k}$

Example:

Given $\underline{p} = 5\underline{i} + \underline{j} - 3\underline{k}$ and $\underline{q} = 4\underline{i} - 3\underline{j} + 2\underline{k}$. Find a) $\underline{p} + \underline{q}$ b) $\underline{p} - \underline{q}$ c) Magnitude of vector \underline{p} d) $2\underline{q} - 10\underline{p}$

Vector Products If $a = a_1 i + a_2 j + a_3 k$ and $b = b_1 i + b_2 j + b_3 k$, 1) Scalar Product (Dot product) $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$ or $a.b = |a| |b| \cos \theta$, θ is the angle between a and b 2) Vector Product (Cross product) $\begin{array}{c|c} i & j & k\\ \vdots & \vdots & \vdots\\ a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \end{array}$ $= (a_2b_3 - a_3b_2)i - (a_1b_3 - a_3b_1)j + (a_1b_2 - a_2b_1)k$

Vector Differential Calculus

Let A be a vector depending on parameter u,

$$A(u) = a_x(u) \underbrace{i}_{\sim} + a_y(u) \underbrace{j}_{\sim} + a_z(u) \underbrace{k}_{\sim}$$

The derivative of A(u) is obtained by differentiating each component separately,

$$\frac{dA}{\tilde{u}} = \frac{da_x}{du} \stackrel{i}{\sim} + \frac{da_y}{du} \stackrel{j}{\sim} + \frac{da_z}{du} \stackrel{k}{\sim}$$

• The *n*th derivative of vector A to grave by $\frac{d^n A}{\tilde{u}^n} = \frac{d^n a_x}{du^n} i + \frac{\tilde{d}^n a_y}{du^n} j + \frac{d^n a_z}{du^n} k.$

Example :

The position of a moving particle at time *t* is given by x = 4t + 3, $y = t^2 + 3t$, $z = t^3 + 5t^2$. Obtain

- The velocity and acceleration of the particle.
- The magnitude of both velocity and acceleration at t = 1.

Solution

• The parameter is t, and the possible medior is $r(t) = (4t+3)i + (t^2+3t)j + (t^3+5t^2)k.$

• The velocity is given by $\frac{a}{dt} = 4i + (2t+3)j + (3t^2 + 10t)k.$

The acceleration is

$$\frac{d^2 r}{dt^2} = 2 j + (6t+10)k.$$

• At
$$t = 1$$
, the velocity of the particular

$$\frac{d r(1)}{\frac{d}{dt}} = 4 \underbrace{i}_{\sim} + (2(1) + 3) \underbrace{j}_{\sim} + (3(1)^{2} + 10(1)) \underbrace{k}_{\sim}$$

$$= 4 \underbrace{i}_{\sim} + 5 \underbrace{j}_{\sim} + 13 \underbrace{k}_{\sim}.$$

and the magnitude of the velocity is $\left|\frac{d r(1)}{\tilde{d}t}\right| = \sqrt{4^2 + 5^2 + 13^2}$ $= \sqrt{210}.$

• At *t* = 1, the acceleration of the particle

$$\frac{d^2 r(1)}{dt^2} = 2 j + (6(1) + 10) k$$

= 2 j + 16 k.

and the magnitude of the acceleration is

$$\left|\frac{d^2 r(1)}{\tilde{dt}^2}\right| = \sqrt{2^2 + 16^2}$$

 $=2\sqrt{65}.$

Differentiation of Two Vectors

If both $A(u)_{and} B(u)_{are vectors}$

Partial Derivatives of a Vector

 If vector <u>A</u> depends on more than one parameter, i.e

$$A(u_1, u_2, \dots, u_n) = a_x(u_1, u_2, \dots, u_n) i_{\widetilde{x}}$$
$$+ a_y(u_1, u_2, \dots, u_n) j_{\widetilde{x}}$$
$$+ a_z(u_1, u_2, \dots, u_n) k_{\widetilde{x}}$$

• Partial derivative of \underline{A} with respect to u_1 is given by

$$\frac{\partial A}{\partial u_{1}} = \frac{\partial a_{x}}{\partial u_{1}} i + \frac{\partial a_{y}}{\partial u_{1}} j + \frac{\partial a_{z}}{\partial u_{1}} k,$$

$$\frac{\partial^{2} A}{\partial u_{1} \partial u_{2}} = \frac{\partial^{2} a_{x}}{\partial u_{1} \partial u_{2}} i + \frac{\partial^{2} a_{y}}{\partial u_{1} \partial u_{2}} j + \frac{\partial^{2} a_{z}}{\partial u_{1} \partial u_{2}} k$$
e.t.c.

Example

If
$$F = 3uv^2 i + (2u^2 - v) j + (u^3 + v^2) k$$

then

$$\frac{\partial F}{\partial u} = 3v^{2} \underbrace{i}_{\sim} + 4u \underbrace{j}_{\sim} + 3u^{2} \underbrace{k}_{\sim},$$

$$\frac{\partial F}{\partial v} = 6uv \underbrace{i}_{\sim} - \underbrace{j}_{\sim} + 2v \underbrace{k}_{\sim}, \quad \frac{\partial^{2} F}{\partial u^{2}} = 4 \underbrace{j}_{\sim} + 6u \underbrace{k}_{\sim},$$

$$\frac{\partial^{2} F}{\partial v^{2}} = 6u \underbrace{i}_{\sim} + 2 \underbrace{k}_{\sim}, \quad \frac{\partial^{2} F}{\partial u \partial v} = \frac{\partial^{2} F}{\partial v \partial u} = 6v \underbrace{i}_{\sim}$$

Exercise:

If
$$F = 2u^2 v i + (3u - v^3) j + (u^3 + 3v^2) k$$

then

Vector Integral Calculus

 The concept of vector integral is the same as the integral of real-valued functions except that the result of vector integral is a vector.

If
$$A(u) = a_x(u) \underbrace{i}_{\sim} + a_y(u) \underbrace{j}_{\sim} + a_z(u) \underbrace{k}_{\sim}$$

then

$$\int_{a}^{b} A(u) du = \int_{a}^{b} a_{x}(u) du i_{\widetilde{a}}$$
$$+ \int_{a}^{b} a_{y}(u) du j + \int_{a}^{b} a_{z}(u) du k_{\widetilde{a}}.$$

Example :

If $F_{\sim} = (3t^2 + 4t) \underbrace{i}_{\sim} + (2t - 5) \underbrace{j}_{\sim} + 4t^3 \underbrace{k}_{\sim},$

calculate $\int_{1}^{3} F dt$.

Answer

$$\int_{1}^{3} F dt = \int_{1}^{3} (3t^{2} + 4t) dt \, \underbrace{i}_{\sim} + \int_{1}^{3} (2t - 5) dt \, \underbrace{j}_{\sim} + \int_{1}^{3} 4t^{3} dt \, \underbrace{k}_{\sim}$$
$$= [t^{3} + 2t^{2}]_{1}^{3} \, \underbrace{i}_{\sim} + [t^{2} - 5t]_{1}^{3} \, \underbrace{j}_{\sim} + [t^{4}]_{1}^{3} \, \underbrace{k}_{\sim}$$
$$= 42 \, \underbrace{i}_{\sim} - 2 \, \underbrace{j}_{\sim} + 80 \, \underbrace{k}_{\sim}.$$

Exercise:

If $\underset{\sim}{F} = (t^3 + 3t) \underset{\sim}{i} + 2t^2 \underset{\sim}{j} + (t - 4) \underset{\sim}{k}$, calculate $\int_{0}^{1} \underset{\sim}{F} dt$.

Answer

$$\int_{0}^{1} F dt = \int_{0}^{1} (t^{3} + 3t) dt \, \underline{i} + \int_{0}^{1} 2t^{2} dt \, \underline{j} + \int_{0}^{1} (t - 4) dt \, \underline{k}$$

= ...
= ...
= $\frac{7}{4} \underline{i} + \frac{2}{3} \underline{j} - \frac{7}{2} \underline{k}.$

Del Operator Or Nabla (Symbol ∇)

 Operator ∇ is called <u>vector differential operator</u>, defined as

$$\nabla = \left(\frac{\partial}{\partial x} \frac{i}{\partial x} + \frac{\partial}{\partial y} \frac{j}{\partial x} + \frac{\partial}{\partial z} \frac{k}{\partial z}\right).$$