Volume Integral

Scalar Field, F Integral

If V is a closed region and F is a scalar field in region V, volume integral F of V is

$$
\int_{V} F d V=\iiint_{V} F d x d y d z
$$

Example :

Scalar function $F=2 x$ defeated in one cubic that has been built by planes $x=0, x=1, y=0, y=$ $3, z=0$ and $z=2$. Evaluate volume integral F of the cubic.

Solution

$$
\begin{aligned}
\int_{V} F d V & =\int_{z=0}^{2} \int_{y=0}^{3} \int_{x=0}^{1} 2 x d x d y d z \\
& =2 \int_{z=0}^{2} \int_{y=0}^{3}\left[\frac{x^{2}}{2}\right]_{0}^{1} d y d z \\
& =2 \int_{z=0}^{2} \int_{y=0}^{3} \frac{1}{2} d y d z \\
& =2 \cdot \frac{1}{2} \int_{z=0}^{2}[y]_{0}^{3} d z \\
& =\int_{z=0}^{2} 3 d z=3[z]_{0}^{2}=6
\end{aligned}
$$

Volume Integral

If V is a closed region and F, vector field in region
V, Volume integral F of V is

$$
\int_{V} F \underset{\sim}{F} d V=\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} F d z d y d x
$$

Example:

Evaluate $\int_{V} F d V$, where V is a region bounded by $x=0, y=0, z=0$ and $2 x+y+z=2$, and also given $\underset{\sim}{F}=2 z \underset{\sim}{i}+y \underset{\sim}{k}$

Solution

If $x=y=0$, plane $2 x+y+z=2$ intersects z-axis at $z=2$. $(0,0,2)$
If $x=z=0$, plane $2 x+y+z=2$ intersects y-axis at $y=2$.

If $y=z=0$, plane $2 x+y+z=2$ intersects x-axis at $x=1$.
$(1,0,0)$

We can generate this integral in 3 steps :

1. Line Integral from $x=0$ to $x=1$.
2. Surface Integral from line $y=0$ to line $y=2(1-$ $x)$.
3. Volume Integral from surface $z=0$ to surface $2 x+y+z=2$ that is $z=2(1-x)-y$

Therefore,

$$
\begin{aligned}
\int_{V} F \underset{\sim}{F} d V & =\int_{x=0}^{1} \int_{y=0}^{2(1-x)} \int_{z=0}^{2(1-x)-y} \underset{\sim}{F} d z d y d x \\
& =\int_{x=0}^{1} \int_{y=0}^{2(1-x)} \int_{z=0}^{2(1-x)-y}(2 z \underset{\sim}{i}+\underset{\sim}{x}) d z d y d x \\
& \vdots \\
& \vdots \\
& =\frac{2}{3} \underset{\sim}{i}+\frac{1}{3} \underset{\sim}{k}
\end{aligned}
$$

Example:

Evaluate $\int_{V} \underset{\sim}{F} d V$ where $\underset{\sim}{F}=2 \underset{\sim}{i}+2 z \underset{\sim}{j}+y \underset{\sim}{k}$ and V is region bounded by $z=0, z=4$ and
$x^{2}+y^{2}=9$

Using polar coordinate of cylinder,
$x=\rho \cos \phi ; y=\rho \sin \phi ; z=z ;$
$d V=\rho d \rho d \phi d \mathbf{z}$
where

$$
0 \leq \rho \leq 3,0 \leq \phi \leq 2 \pi, 0 \leq z \leq 4
$$

Therefore,

$$
\begin{aligned}
& \int_{V} \underset{\sim}{F} d V=\iiint_{V}(2 \underset{\sim}{i}+2 z \underset{\sim}{j}+\underset{\sim}{j} \underset{\sim}{k}) d x d y d z \\
& =\int_{z=0}^{4} \int_{\phi=0}^{2 \pi} 0_{\rho=0}^{3}(2 \underset{\sim}{i}+2 z \underset{\sim}{j}+\rho \sin \phi \underset{\sim}{k}) \rho d \rho d \phi d z
\end{aligned}
$$

$$
=72 \pi i+144 \pi j
$$

Exercise:

Evaluate $\int_{V} \underset{\sim}{F} d V$ where $\underset{\sim}{F}=\underset{\sim}{i}+z \underset{\sim}{j}+2 y \underset{\sim}{x}$ and
V is region bounded by planes $z=0, z=3$ and surface $x^{2}+y^{2}=4$.

Answer : $18 \pi(2 \underset{\sim}{i}+\underset{\sim}{j})$

