Differential Equations

Summary (Recall)

- Differential Operator, which is a linear operator.
- Differential equation in linear operator form.
- Auxiliary equation in terms of differential operator form.
- Annihilator operator.
- Annihilator operators of different functions.
- Solution non-homogeneous equation with annihilator operator.

Method of variation of parameters

- This method is more general method to solve the nonhomogeneous linear differential equation.
- This method can be applied to DEs where the method of undetermined coefficients fails.
- This method is not limited to the input functions that are combinations of four type of functions (constant, polynomial, exponential and trigonometric).

- It is also applicable to linear DEs with variable coefficients.
- However, the particular integral $\left(y_{p}\right)$ is only possible if the associated homogeneous equation can be solved.

For first order equation:

The particular solution y_{p} of the first order linear DE is

$$
y_{p}=e^{-\int P d x} \cdot \int e^{\int P d x} \cdot f(x) d x
$$

This formula can also be derived by another method, known as the variation of parameters. The basic procedure is same as discussed in the lecture on construction of a second solution. As

$$
y_{1}=e^{-\int P d x}
$$

is the solution of the homogeneous first order DE

$$
\frac{d y}{d x}+P(x) y=0
$$

Therefore, the general solution of the equation is

$$
y=c_{1} y_{1}(x) .
$$

In the method of variation of parameters we assume

$$
y_{p}=u_{1}(x) y_{1}(x)
$$

is a particular solution of the non-homogeneous differential equation

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Notice that the parameter c_{1} has been replaced by the variable $u_{1}(x)$. We substitute y_{p} in the given equation to obtain

Since,

$$
\frac{d y_{1}}{d x}+P(x) y_{1}=0 \quad \text { (because } \boldsymbol{y}_{\mathbf{1}} \text { is the solution) }
$$

So that we obtain
$\therefore \quad y_{1} \frac{d u_{1}}{d x}=f(x)$
This is a variable separable equation.

Thus,

$$
d u_{1}=\frac{f(x)}{y_{1}(x)} d x
$$

Integration gives

$$
u_{1}(x)=\int \frac{f(x)}{\left.\dddot{y}_{1}\right)} d x=\int e^{\iint^{\operatorname{Pdx}}} \cdot f(x) d x .
$$

As $y_{p}=u_{1}(x) y_{1}(x)$.
Therefore,

$$
y_{p}=e^{-\int P d x} \cdot \int e^{\int P d x} \cdot f(x) d x
$$

or

$$
\mu_{1}=\int \frac{f(x)}{y_{1}(x)} d x
$$

Method for Second Order Equation:

We consider the second order linear non-homogeneous DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

Divide by $a_{2}(x)$, to get equation in the standard form
where

$$
P(x)=\frac{a_{1}(x)}{a_{2}(x)}, Q(x)=\frac{a_{0}(x)}{a_{2}(x)}, f(x)=\frac{g(x)}{a_{2}(x)}
$$

are continuous on some interval I.
Consider the associated homogeneous DE,

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

Complementary function:

Complementary function is

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

So that

$$
\begin{aligned}
& y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0 \\
& y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0
\end{aligned}
$$

Particular Integral

For finding a particular solution ${ }^{y_{p}}$, we replace the parameters c_{1} c_{2} and in the complementary function with the unknown variables $u_{1}(x)$ and $u_{2}(x)$ So that the assumed particular integral is

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

Since we seek to determine two unknown functions u_{1} and μ_{2} we need two equations involving these unknowns. One of these two equations results from substituting the assumed ${ }^{y_{p}}$ in the given differential equation. We impose the other equation to simplify the first derivative and thereby the $2^{\text {nd }}$ derivative of y_{p}

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+y_{1} u_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{2}^{\prime} y_{2}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}
$$

To avoid $2^{\text {nd }}$ derivatives of u_{1} and u_{2}, we impose the condition

Then,

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
$$

So that

$$
y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}
$$

Therefore,

$$
\begin{aligned}
y_{p}^{\prime \prime}+P y_{p}^{\prime}+Q y_{p} & =u_{1} y_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime} \\
& +P u_{1} y_{1}^{\prime}+P u_{2} y_{2}^{\prime}+Q u_{1} y_{1}+Q u_{2} y_{2}
\end{aligned}
$$

Substituting in the given non-homogeneous differential equation yields
$u_{1} y_{1}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2} y_{2}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+P u_{1} y_{1}^{\prime}+P u_{2} y_{2}^{\prime}+Q u_{1} y_{1}+Q u_{2} y_{2}=f(x)$
or $u_{1}\left[y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+P y_{2}^{\prime}+2 y_{2}\right]+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y^{\prime}=f(x)$
Now making use of the relations
we get,

$$
\begin{gathered}
y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0 \\
y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)
\end{gathered}
$$

Hence u_{1} and u_{2} must be functions that satisfy the equations

$$
\left.\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)
\end{array}\right\}
$$

By using the Cramer's rule, the solution of this set of équations is given by

$$
u_{1}^{\prime}=\frac{W_{1}}{W}, u_{2}^{\prime}=\frac{W_{2}}{W}
$$

where W, W_{1} and W_{2} and denote the following determinants

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}, \quad W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}, \quad W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right|\right.\right.
$$

The determinant ${ }^{W}$ can be identified as the Wronskian of the solutions y_{1} and y_{2} Since the solutions y_{1} and y_{2} are linearly independent on I. Therefore

$$
W\left(y_{1}(x), y_{2}(x)\right) \neq 0, \forall x \in I .
$$

Now integrating the expressions for $u_{1}^{\prime} a n d u_{2}^{\prime}$ we obtain the value of u_{1} and ${ }^{u_{2}}$, hence the particular solution of the non-homogeneous linear DE.

Summary of the Method

To solve the second order non-homogeneous linear DE

$$
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x)
$$

using the variation of parameters, we need to perform the following steps:

Step 1

We find the complementary function by solving the associated homogeneous differential equation

Step 2

$$
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

If the complementary function of the equation is given by

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}
$$

then y_{1} and y_{2} are two linearly independent solutions of the homogeneous differential equation. Computing Wronskian.

Step 3

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \checkmark
$$

By dividing with ${ }^{a_{2}}$, we transform the given non-homogeneous equation into the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

and we identify the function $\mathrm{f}(\mathrm{x})$.

Step 4

We now construct the determinants W_{1} and W_{2} given by

Step 5

$$
\left.W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right| \begin{array}{l}
W_{2}
\end{array}=\left\lvert\, \begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & (x)
\end{array}\right.\right)
$$

Next we determine the derivatives of the unknown variables u_{1} andu u_{2} through the relations

Step 6

$$
v_{u_{1}^{\prime}}=\frac{W_{1}}{W}, u_{2}^{\prime}=\frac{W_{2}}{W}
$$

Integrate the derivatives $u_{1}^{\prime} a n d u_{2}^{\prime}$ to find the unknown variables $u_{1} a n d u_{2}$. So that

$$
u_{1}=\int \frac{W_{1}}{W} d x, \quad u_{2}=\int \frac{W_{2}}{W} d x
$$

Step 7

Write a particular solution of the given non-homogeneous equation as

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Step 8

The general solution of the differential equation is then given by

$$
y=y_{c}+y_{p}=c_{1} y_{1}+c_{2} y_{2}+u_{1} y_{1}+u_{2} y_{2}
$$

Constants of Integration

We don't need to introduce the constants of integration, when computing the indefinite integrals in step 6 to find the unknown functions of u_{1} andu . For, if we do introduce these constants, then

$$
y_{p}=\left(u_{1}+a_{1}\right) y_{1}+\left(u_{2}+b_{1}\right) y_{2}
$$

So that the general solution of the given non-homogeneous differential equation is

$$
y=y_{c}+y_{p}=c_{1} y_{1}+c_{2} y_{2}+\left(u_{1}+a_{1}\right) y_{1}+\left(u_{2}+b_{1}\right) y_{2}
$$

or

$$
y=\left(c_{1}+a_{1}\right) y_{1}+\left(c_{2}+b_{1}\right) y_{2}+u_{1} y_{1}+u_{2} y_{2}
$$

If we replace $c_{1}+a_{1}$ with C_{1} and $c_{2}+b_{1}$ with C_{2}, we obtain

$$
y=C_{1} y_{1}+C_{2} y_{2}+u_{1} y_{1}+u_{2} y_{2}
$$

This does not provide anything new and is similar to the general solution found in step 8 , namely

$$
y=c_{1} y_{1}+c_{2} y_{2}+u_{1} y_{1}+u_{2} y_{2}
$$

Example 1

Solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x} .
$$

Solution:

Step 1

To find the complementary function

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

$$
\begin{equation*}
m^{2}-4 m+4=0 \tag{}
\end{equation*}
$$

Put

$$
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}
$$

Then the auxiliary equation is

$$
\begin{aligned}
& m^{2}-4 m+4=0 \\
& (m-2)^{2}=0, \Rightarrow m=2,2
\end{aligned}
$$

Repeated real roots of the auxiliary equation

Step 2

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

By the inspection of the complementary function y, we make the identification

$$
y_{1}=e^{2 x} \text { and } y_{2}=x e^{2 x}
$$

Therefore

$$
W\left(y_{1}, y_{2}\right)=\left(e^{2 x}, x e^{2 x}\right)=\left|\begin{array}{cc}
e^{2 x} \\
2 e^{2 x} & x e^{2 x} \\
2 x e^{2 x}+e^{2 x}
\end{array}\right|=e^{4 x} \neq 0, \forall x
$$

Step 3

The given differential equation is

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}
$$

Since this equation is already in the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

Therefore, we identify the function as

$$
f(x)=(x+1) e^{2 x}
$$

Step 4

We now construct the determinants

$$
\begin{aligned}
& W_{1}=\left|\begin{array}{cc}
0 & x e^{2 x} \\
(x+1) e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=-(x+1) x e^{4 x} \\
& W_{2}=\left|\begin{array}{cc}
e^{2 x} & 0 \\
2 e^{2 x} & (x+1) e^{2 x}
\end{array}\right|=(x+1) e^{4 x}
\end{aligned}
$$

Step 5

We determine the derivatives of the functions u_{1} anduin this step

$$
\checkmark u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{(x+1) x e^{4 x}}{e^{4 x}}=-x^{2}-x
$$

Step $6 \quad \checkmark u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{(x+1) e^{4 x}}{e^{4 x}}=x+1$
Integrating the last two expressions, we obtain

$$
u_{1}=\int\left(-x^{2}-x\right) d x=-\frac{x^{3}}{3}-\frac{x^{2}}{2}
$$

Remember!

$$
u_{2}=\int(x+1) d x=\frac{x^{2}}{2}+x .
$$

We don't have to add the constants of integration.

Step 7

Therefore, a particular solution of then given differential equation is

$$
y_{p}=\left(-\frac{x^{3}}{3}-\frac{x^{2}}{2}\right) e^{2 x}+\left(\frac{x^{2}}{2}+x\right) x e^{2 x}
$$

or

$$
y_{p}=\left(\frac{x^{3}}{6}+\frac{x^{2}}{2}\right) e^{2 x}
$$

Step 8

Hence, the general solution of the given differential equation is

$$
y=y_{c}+y_{p}=c_{e^{2 x}}+c_{2} x e^{2 x}+\left(\frac{x^{3}}{6}+\frac{x^{2}}{2}\right) e^{2 x}
$$

Example 2
Solve
Solution:

$$
4 y^{\prime \prime}+36 y=\csc 3 x .
$$

Step 1

To find the complementary function we solve the associated homogeneous differential equation

$$
4 y^{\prime \prime}+36 y=0 \Rightarrow y^{\prime \prime}+9 y=0
$$

$$
m^{2}=-9
$$

The auxiliary equation is

$$
m^{2}+9=0 \Rightarrow m= \pm 3 i
$$

Roots of the auxiliary equation are complex. Therefore, the complementary function is

$$
y_{c}=c_{1} \cos 3 x+c_{2} \sin 3 x
$$

Step 2

From the complementary function, we identify

$$
y_{1}=\cos 3 x, y_{2}=\sin 3 x
$$

as two linearly independent solutions of the associated homogeneous equation. Therefore
Step $3 \quad W(\cos 3 x, \sin 3 x)=\left|\begin{array}{cc}\cos 3 x & \sin 3 x \\ -3 \sin 3 x & 3 \cos 3 x\end{array}\right|=3$
By dividing with, we put the given equation in the following standard form

$$
y^{\prime \prime}+9 y=\frac{1}{4} \csc 3 x .
$$

So that we identify the function as

$$
f(x)=\frac{1}{4} \csc 3 x
$$

Step 4

We now construct the determinants W_{1} and W_{2}

Step 5

$$
\begin{align*}
& W_{1}=\left|\begin{array}{cc}
0 & \sin 3 x \\
\frac{1}{4} \csc 3 x & 3 \cos 3 x
\end{array}\right|=-\frac{1}{4} \csc 3 x \cdot \sin 3 x=-\frac{1}{4} \\
& W_{2}=\left|\begin{array}{cc}
\cos 3 x & 0 \\
\checkmark & \checkmark \\
-3 \sin 3 x & \frac{1}{4} \csc 3 x
\end{array}\right|=\frac{1}{4} \frac{\cos 3 x}{\sin 3 x}
\end{align*}
$$

Therefore, the derivatives $u_{1}^{\prime} a n d u_{2}^{\prime}$ are given by

Step 6

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{1}{12}, \quad u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{1}{12} \frac{\cos 3 x}{\sin 3 x}
$$

Integrating the last two equations w.r.t, we obtain

$$
u_{1}=-\frac{1}{12} x \text { and } u_{2}=\frac{1}{36} \ln |\sin 3 x|
$$

Here, no constants of integration are used.

Step 7

The particular solution of the non-homogeneous equation is

Step 8

$$
y_{p}=-\frac{1}{12} x \cos 3 x+\frac{1}{36}(\sin 3 x) \ln |\sin 3 x|
$$

Hence, the general solution of the given differential equation is

$$
y=y_{c}+y_{p}=c_{1} \cos 3 x+c_{2} \sin 3 x-\frac{1}{12} x \cos 3 x+\frac{1}{36}(\sin 3 x) \ln |\sin 3 x|
$$

Example 3
Solve
Solution:
Step 1
For the complementary function consider the associated homogeneous equation

$$
y^{\prime \prime}-y=0
$$

To solve this equation we put

$$
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}
$$

Then the auxiliary equation is:

$$
m^{2}-1=0 \Rightarrow m= \pm 1
$$

The roots of the auxiliary equation are real and distinct.
Therefore, the complementary function is

Step 2

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-x}
$$

From the complementary function we find

$$
y_{1}=e^{x}, y_{2}=e^{-x}
$$

The functions y_{1} and y_{2} are two linearly independent solutions of the homogeneous equation. The Wronskian of these solutions is

$$
W\left(e^{x}, e^{-x}\right)=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2
$$

Step 3
The given equation is already in the standard form

$$
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=f(x)
$$

Here

$$
f(x)=\frac{1}{x}
$$

Step 4

We now form the determinants

$$
\mathrm{W}_{1}=\left|\begin{array}{cc}
0 & e^{-x} \\
1 / x & -e^{-x}
\end{array}\right|=-e^{-x}(1 / x)
$$

Step 5

$$
\mathrm{W}_{2}=\left|\begin{array}{cc}
e^{x} & 0 \\
e^{x} & 1 / x
\end{array}\right|=e^{x}(1 / x)
$$

Therefore, the derivatives of the unknown functions and are given by

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{e^{-x}(1 / x)}{-2}=\frac{e^{-x}}{2 x} \\
& u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{e^{x}(1 / x)}{-2}=-\frac{e^{x}}{2 x}
\end{aligned}
$$

Step 6
We integrate these two equations to find the unknown functions

$$
u_{1}=\frac{1}{2} \int \frac{e^{-x}}{x} d x, u_{2}=-\frac{1}{2} \int \frac{e^{x}}{x} d x
$$

The integrals defining u_{1} andu u_{2} cannot be expressed in terms of the elementary functions and it is customary to write such integral as:

Step 7

$$
u_{1}=\frac{1}{2} \int_{x_{0}}^{x} \frac{e^{-t}}{t} d t, \quad u_{2}=\frac{1}{2} \int_{x_{0}}^{x} \int_{t}^{t} d t
$$

A particular solution of the non-homogeneous equations is

Step 8

$$
y_{p}=\frac{1}{2} e^{x} \int_{x_{0}}^{x} \frac{e^{-t}}{t} d t-\frac{1}{2} e^{-x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t
$$

Hence, the general solution of the given differential equation is

$$
y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2} e^{x} \int_{x_{0}}^{x} \frac{e^{-t}}{t} d t-\frac{1}{2} e^{-x} \int_{x_{0}}^{x} \frac{e^{t}}{t} d t
$$

Problem
Solve the given differential equation by variation of parameters.

$$
y^{\prime \prime}-y=e^{x}+1
$$

$$
\begin{aligned}
& \text { Assounted hong } y^{\prime \prime}-y=0 \\
& m^{2}-1=0 \quad \Rightarrow m^{2}=1 \Rightarrow m= \pm 1 \\
& \text { Aux. } y_{c}=c_{1} e^{x}+c_{2} e^{-x} \\
& y_{1}=e^{x} y_{2}=e^{-x} \text { ane two of solutions } \\
& \text { of homs } e_{1} \\
& \text { Wry, } \left.y_{2}\right)=\left|\begin{array}{ll}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-e^{x-x}-e^{-x+x}=-2
\end{aligned}
$$

Since $y^{\prime \prime}-y=e^{x}+1$
then $f(x)=e^{x}+1$
Now, $\quad w_{1}=\left|\begin{array}{cc}0 & e^{-x} \\ e^{x}+1 & -e^{-x}\end{array}\right|=0-e^{-x}\left(e^{x}+1\right)$

$$
=-e^{-x+x}-e^{-x}
$$

$$
\begin{aligned}
& w_{2}=\left|\begin{array}{ll}
e^{x} & 0 \\
e^{x} & e^{x}+1
\end{array}\right|=e^{x}\left(e^{x}+1\right)-0=-1-e^{-x} \\
& u_{1}^{\prime}=\frac{w_{1}}{w}+e^{2 x} \\
& u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{1}{w_{1}^{\prime}}=\frac{-1-e^{-x}}{-2}=\frac{1+e^{-x}}{2} \\
& \left.u_{1}=e^{-x}\right]
\end{aligned}
$$

$$
u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{e^{2 x}+e^{x}}{-2}=\frac{-1}{2}\left(e^{2 x}+e^{x}\right)
$$

$$
\begin{aligned}
& u_{2}=-\frac{1}{2}\left[\frac{e^{2 x}}{2}+e^{x}\right]=-\frac{1}{4}\left[e^{2 x}+2 e^{x}\right] \\
& y_{p}=\frac{1}{2}\left[x-e^{-x}\right] e^{x}+\left(-\frac{1}{4}\right)\left[e^{2 x}+2 e^{x}\right] e^{-x}
\end{aligned}
$$

The general 80. of the $D E$;

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2}\left[x-e^{-x}\right] e^{x}-\frac{1}{4}\left[e^{2 x}+2 e^{x}\right]
$$

For practice solve the problems from
 Exercise 4.6 of your text book

Summary

- Motivation for the method of variation of parameters.
- Method for first order DEs.
- Method for second order DEs.
- Summary of the method.
- No need to add the constants.
- Some examples.

