Solution of Differential Equations

Topics to be discussed

> Solution of Differential equations

- Power series method
- Bessel's equation by Frobenius method

POWER SERIES METHOD

Power series method

$>$ Method for solving linear differential equations with variable co-efficient.

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

$\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are variable co-effecients.

Power series method (Cont'd)

$>$ Solution is expressed in the form of a power series.

$$
\begin{aligned}
& \text { Let } \quad y=\sum_{m=0}^{\infty} a_{m} x^{m}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \ldots \ldots . . \\
& \text { so, } \quad y^{\prime}=\sum_{m=1}^{\infty} m a_{m} x^{m-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \ldots \ldots . . \\
& y^{\prime \prime}=\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}=2 a_{2}+3.2 a_{3} x+4.3 a_{4} x^{2} \ldots
\end{aligned}
$$

Power series method (Cont'd)

$>$ Substitute $y, y^{\prime}, y^{\prime \prime}$
$>$ Collect like powers of x
$>$ Equate the sum of the co-efficients of each occurring power of x to zero.
$>$ Hence the unknown co-efficients can be determined.

Examples

Example 1: Solve $y^{\prime}-y=0$

Example 2: Solve

$$
y^{\prime}=2 x y
$$

Example 3: Solve

$$
y^{\prime \prime}+y=0
$$

Power series method (Cont'd)

- The general representation of the power series solution is,

$$
y=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \ldots
$$

Theory of power series method

> Basic concepts

A power series is an infinite series of the form
(1) $\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \ldots$.
x is the variable, the center x_{0}, and the coefficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}$ are real.

Theory of power series method (Cont'd)

(2) The nth partial sum of (1) is given as,

$$
s_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \ldots+a_{n}\left(x-x_{0}\right)^{n}
$$

where $\mathrm{n}=0,1,2$.
(3) The remainder of (1) is given as,

$$
R_{n}(x)=a_{n+1}\left(x-x_{0}\right)^{n+1}+a_{n+2}\left(x-x_{0}\right)^{n+2}+\ldots \ldots
$$

Convergence Interval. Radius of convergence

- Theorem: Let $y=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots .$. be a power series ,then there exists some number $\infty \leq R \leq 0$,called its radius of convergence such that the series is convergent for
$\left|\left(x-x_{0}\right)\right|<R$ and divergent for $\left|\left(x-x_{0}\right)\right|>R$
- The values of x for which the series converges, form an interval, called the convergence interval

Convergence Interval. Radius of convergence

What is R ?
The number R is called the radius of convergence.
It can be obtained as,

$$
R=1 / \lim _{m \rightarrow \infty}\left|\frac{a_{m+1}}{a_{m}}\right| \quad \text { or } \quad R=1 / \lim _{m \rightarrow \infty} m|\sqrt{m}|
$$

Examples (Calculation of R)

Example 1:

Answer

$$
\frac{|(n+1) \operatorname{term}|}{|(n) \operatorname{term}|}=\frac{(n+1)\left|x^{n+1}\right|}{2^{n+2}} * \frac{2^{n+1}}{(n)\left|x^{n}\right|}=\frac{(n+1)|x|}{2 . n}
$$

$$
\text { As } \mathrm{n} \rightarrow \infty, \quad \frac{(n+1)|x|}{2 . n} \rightarrow \frac{|x|}{2}
$$

Examples (Calculation of R) Cont'd

Hence $\quad R=2$

- The given series converges for

$$
|(x-0)|<2
$$

- The given series diverges for

$$
|(x-0)|>2
$$

Examples

- Example 2:

Find the radius of convergence of the following series,

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n \cdot 2^{n}}
$$

Examples

- Example 3:

Find the radius of convergence of the following series,
$\sum_{n=0}^{\infty} \frac{x^{n}}{n \cdot(n-1) \cdot(n-2) \cdot(n-3) \ldots 1}$

Operations of Power series: Theorems

(1) Equality of power series

$$
\text { If } \sum_{n=0}^{\infty} a_{n}\left(x-x_{a}\right)^{n}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{a}\right)^{n} \text {, with } \quad R \neq 0
$$

then $a_{n}=b_{n}$,for all n

Corollary

$$
\text { If } \quad \sum_{n=0}^{\infty} a_{n}\left(x-x_{a}\right)=0, \quad \text { all } \mathrm{a}_{\mathrm{n}}=0, \text { for all } \mathrm{n}, \mathrm{R}>0
$$

Theorems (Cont'd)

(2) Termwise Differentiation

$$
\text { If } y=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { is convergent, then }
$$

derivatives involving $\mathrm{y}(\mathrm{x})$ such as $y^{\prime}(x), y^{\prime \prime}(x)$, etc are also convergent.
(3) Termwise Addition

If $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ are convergent
in the same domain x , then the sum also converges in that domain.

Existence of Power Series Solutions. Real Analytic Functions

- The power series solution will exist and be unique provided that the variable co-efficients $\mathbf{p}(\mathbf{x}), \mathbf{q (x)}$, and $f(x)$ are analytic in the domain of interest.

What is a real analytic function?
A real function $f(x)$ is called analytic at a point $x=x_{0}$ if it can be represented by a power series in powers of $x-x_{0}$ with radius of convergence $R>0$.

Example

- Let's try this

$$
y^{\prime \prime}(x)+x y^{\prime}(x)+y(x)=0
$$

BESSEL'S EQUATION. BESSEL FUNCTIONS $\mathrm{J}_{\mathbf{v}}(\mathbf{x})$

Application

- Heat conduction
- Fluid flow
- Vibrations
- Electric fields

Bessel's equation

- Bessel's differential equation is written as

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

or in standard form,

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{n^{2}}{x^{2}}\right) y=0
$$

Bessel's equation (Cont'd)

- n is a non-negative real number.
- $\mathrm{x}=0$ is a regular singular point.
- The Bessel's equation is of the type,

$$
y^{\prime \prime}+\frac{p(x)}{r(x)} y^{\prime}+\frac{q(x)}{r(x)} y=\frac{f(x)}{r(x)}
$$

and is solved by the Frobenius method

Non-Analytic co-efficients -Methods of Frobenius

- If x is not analytic, it is a singular point.

$$
\begin{aligned}
& r(x) y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \\
& \rightarrow \quad y^{\prime \prime}+\frac{p(x)}{r(x)} y^{\prime}+\frac{q(x)}{r(x)} y=\frac{f(x)}{r(x)}
\end{aligned}
$$

The points where $r(x)=0$ are called as singular points.

Non-Analytic co-efficients -Methods of Frobenius (Cont'd)

- The solution for such an ODE is given as,

$$
y=x^{r} \sum_{m=0}^{\infty} a_{m} x^{m}
$$

Substituting in the ODE for values of $y(x)$,
$y^{\prime}(x), y^{\prime \prime}(x)$, equating the co-efficient of x^{m} and obtaining the roots gives the indical solution

Non-Analytic co-efficients -Methods of Frobenius (Cont'd)

We solve the Bessel's equation by Frobenius method.
Substituting a series of the form,

$$
y=\sum_{m=0}^{\infty} a_{m} x^{m+r}
$$

Indical solution

$$
r_{1}=n(n \geq 0) \quad r_{2}=-n
$$

General solution of Bessel's equation

- Bessel's function of the first kind of order n is given as,

$$
J_{n}(x)=x^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m+n} m!(n+m)!}
$$

Substituting -n in place of n, we get

$$
J_{-n}(x)=x^{-n} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m-n} m!(-n+m+1)!}
$$

Example

- Compute

$$
J_{0}(x)
$$

- Compute

$$
J_{1}(x)
$$

General solution of Bessel's equation

- If n is not an integer, a general solution of Bessel's equation for all $x \neq 0$ is given as

$$
y(x)=\left[c_{1} \cdot J_{n}(x)+c_{2} \cdot J_{-n}(x)\right]
$$

Properties of Bessel's Function

$$
\begin{aligned}
& \mathrm{J}_{0}(0)=1 \\
& \mathrm{~J}_{\mathrm{n}}(\mathrm{x})=0 \quad(\mathrm{n}>0) \\
& \mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}(\mathrm{x}) \\
& \frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x) \\
& \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=-x^{n} J_{n-1}(x)
\end{aligned}
$$

Properties of Bessel's Function (Cont'd)

$$
\begin{aligned}
& \frac{d}{d x}\left[J_{n}(x)\right]=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right] \\
& {\left[x . J_{n+1}(x)\right]=\left[2 . n \cdot J_{n}(x)-x . J_{n-1}(x)\right]}
\end{aligned}
$$

$$
\int\left(x^{n} J_{n-1}(x)\right) d x=x^{n} J_{n}(x)+C
$$

$$
\int\left(x^{-n} J_{n+1}(x)\right) d x=-x^{-n} J_{n}(x)+C
$$

Properties of Bessel's Function (Cont'd)

$$
\begin{aligned}
& {\left[J_{n-1}(x)-J_{n+1}(x)\right]=2 \cdot J_{n}^{\prime}(x)} \\
& {\left[J_{n-1}(x)+J_{n+1}(x)\right]=\frac{2 \cdot n}{x} J_{n}(x)} \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

Examples

- Example : Using the properties of Bessel's functions compute,

1. $J_{3}(x)$
2. $\int\left(x^{-2} J_{2}(x)\right) d x$
3. $J_{3 / 2}(x)$
