Solution of Differential Equations

Topics to be discussed

- Solution of Differential equations
- Power series method
- Bessel's equation by Frobenius method

POWER SERIES METHOD

Power series method

➤ Method for solving linear differential equations with variable co-efficient.

$$y'' + p(x)y' + q(x)y = f(x)$$

p(x) and q(x) are variable co-effecients.

Power series method (Cont'd)

 \succ Solution is expressed in the form of a power series.

Let
$$y = \sum_{m=0}^{\infty} a_m x^m = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

so,
$$y' = \sum_{m=1}^{\infty} m a_m x^{m-1} = a_1 + 2a_2 x + 3a_3 x^2 + \dots$$

$$y'' = \sum_{m=2}^{\infty} m(m-1)a_m x^{m-2} = 2a_2 + 3.2a_3 x + 4.3a_4 x^2 \dots$$

Power series method (Cont'd)

- Substitute y, y', y''
- Collect like powers of x

 \succ Equate the sum of the co-efficients of each occurring power of x to zero.

≻ Hence the unknown co-efficients can be determined.

Examples

Example 1: Solve
$$y' - y = 0$$

Example 2: Solve
$$y' = 2xy$$

Example 3: Solve
$$y'' + y = 0$$

Power series method (Cont'd)

• The general representation of the power series solution is,

$$y = \sum_{m=0}^{\infty} a_m (x - x_0)^m = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

Theory of power series method

Basic concepts

A power series is an infinite series of the form

(1)
$$\sum_{m=0}^{\infty} a_m (x - x_0)^m = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

x is the variable, the **center** x_0 , and the **coefficients** a_0,a_1,a_2 are real.

Theory of power series method (Cont'd)

(2) The nth partial sum of (1) is given as,

$$s_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

where n=0,1,2..

(3) The remainder of (1) is given as,

$$R_n(x) = a_{n+1}(x - x_0)^{n+1} + a_{n+2}(x - x_0)^{n+2} + \dots$$

Convergence Interval. Radius of convergence

- Theorem: Let $y = \sum_{m=0}^{\infty} a_m (x x_0)^m = a_0 + a_1 (x x_0) + a_2 (x x_0)^2 + \dots$ be a power series ,then there exists some number $\infty \le R \le 0$,called its **radius of convergence** such that the series is convergent for $|(x - x_0)| < R$ and divergent for $|(x - x_0)| > R$
- The values of x for which the series converges, form an interval, called the **convergence interval**

Convergence Interval. Radius of convergence

What is R?

The number R is called the **radius of convergence**. It can be obtained as,

Examples (Calculation of R)

Example 1:
$$\sum \frac{nx^n}{2^{n+1}}$$

Answer

$$\frac{|(n+1)term|}{|(n)term|} = \frac{(n+1)|x^{n+1}|}{2^{n+2}} * \frac{2^{n+1}}{(n)|x^n|} = \frac{(n+1)|x|}{2.n}$$

As $n \to \infty$, $\frac{(n+1)|x|}{2.n} \to \frac{|x|}{2}$

Examples (Calculation of R) Cont'd

- Hence R = 2
 - The given series converges for |(x-0)| < 2
 - The given series diverges for

|(x-0)| > 2

Examples

• Example 2:

Find the radius of convergence of the following series,

$$\sum_{n=0}^{\infty} \frac{x^n}{n \cdot 2^n}$$

Examples

• Example 3:

Find the radius of convergence of the following series,

$$\sum_{n=0}^{\infty} \frac{x^n}{n.(n-1).(n-2).(n-3)...1}$$

Operations of Power series: Theorems (1) **Equality of power series**

If
$$\sum_{n=0}^{\infty} a_n (x - x_a)^n = \sum_{n=0}^{\infty} b_n (x - x_a)^n$$
, with $R \neq 0$

then $a_n = b_n$, for all n

Corollary

If
$$\sum_{n=0}^{\infty} a_n (x - x_a) = 0$$
, all $a_n = 0$, for all n ,R>0

Theorems (Cont'd)

(2) **Termwise Differentiation**

If $y = \sum_{n=0}^{\infty} a_n x^n$ is convergent, then derivatives involving y(x) such as y'(x), y''(x), etc

are also convergent.

(3) **Termwise Addition**

If
$$\sum_{n=0}^{\infty} a_n x^n$$
 and $\sum_{n=0}^{\infty} b_n x^n$ are convergent

in the same domain x, then the sum also converges in that domain.

Existence of Power Series Solutions. Real Analytic Functions

• The power series solution will exist and be unique provided that the variable co-efficients p(x), q(x), and f(x) are analytic in the domain of interest.

What is a real analytic function ?

A real function f(x) is called analytic at a point $x=x_0$ if it can be represented by a power series in powers of $x-x_0$ with radius of convergence R>0.

Example

• Let's try this

y''(x) + xy'(x) + y(x) = 0

BESSEL'S EQUATION. BESSEL FUNCTIONS $J_v(x)$

Application

- Heat conduction
- Fluid flow
- Vibrations
- Electric fields

Bessel's equation

• Bessel's differential equation is written as

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$$

or in standard form,

$$y'' + \frac{1}{x}y' + (1 - \frac{n^2}{x^2})y = 0$$

Bessel's equation (Cont'd)

- n is a non-negative real number.
- x=0 is a regular singular point.
- The Bessel's equation is of the type,

$$y'' + \frac{p(x)}{r(x)}y' + \frac{q(x)}{r(x)}y = \frac{f(x)}{r(x)}$$

and is solved by the Frobenius method

Non-Analytic co-efficients –Methods of Frobenius

• If x is not analytic, it is a singular point.

r(x)y'' + p(x)y' + q(x)y = f(x)

$$\rightarrow \qquad y'' + \frac{p(x)}{r(x)}y' + \frac{q(x)}{r(x)}y = \frac{f(x)}{r(x)}$$

The points where r(x)=0 are called as singular points.

Non-Analytic co-efficients –Methods of Frobenius (Cont'd)

• The solution for such an ODE is given as,

$$y = x^r \sum_{m=0}^{\infty} a_m x^m$$

Substituting in the ODE for values of y(x),

y'(x), y''(x), equating the co-efficient of x^m and obtaining the roots gives the indical solution

Non-Analytic co-efficients –Methods of Frobenius (Cont'd)

We solve the Bessel's equation by Frobenius method.

Substituting a series of the form,

$$y = \sum_{m=0}^{\infty} a_m x^{m+r}$$

Indical solution

$$r_1 = n(n \ge 0) \qquad r_2 = -n$$

General solution of Bessel's equation

• Bessel's function of the first kind of order n is given as,

$$J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!}$$

Substituting –n in place of n, we get

$$J_{-n}(x) = x^{-n} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m-n} m! (-n+m+1)!}$$

• Compute

 $J_0(x)$

• Compute

 $J_1(x)$

General solution of Bessel's equation

 If n is not an integer, a general solution of Bessel's equation for all x≠0 is given as

$$y(x) = [c_1 J_n(x) + c_2 J_{-n}(x)]$$

Properties of Bessel's Function

$$J_{0}(0) = 1$$

$$J_{n}(x) = 0 \quad (n>0)$$

$$J_{-n}(x) = (-1)^{n} J_{n}(x)$$

$$\frac{d}{dx} [x^{-n} J_{n}(x)] = -x^{-n} J_{n+1}(x)$$

$$\frac{d}{dx} [x^{n} J_{n}(x)] = -x^{n} J_{n-1}(x)$$

Properties of Bessel's Function (Cont'd)

$$\frac{d}{dx}[J_n(x)] = \frac{1}{2}[J_{n-1}(x) - J_{n+1}(x)]$$

$$[x.J_{n+1}(x)] = [2.n.J_n(x) - x.J_{n-1}(x)]$$

$$\int (x^n J_{n-1}(x)) dx = x^n J_n(x) + C$$

$$\int (x^{-n}J_{n+1}(x))dx = -x^{-n}J_n(x) + C$$

Properties of Bessel's Function (Cont'd)

$$[J_{n-1}(x) - J_{n+1}(x)] = 2.J'_{n}(x)$$

$$[J_{n-1}(x) + J_{n+1}(x)] = \frac{2.n}{x} J_n(x)$$

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

Examples

• Example : Using the properties of Bessel's functions compute,

1.
$$J_3(x)$$

$$\int (x^{-2}J_2(x))dx$$

3.
$$J_{\frac{3}{2}}(x)$$