

CHAPTER 1
 Introduction to Differential Equations

1.1 Definitions and Terminology
1.2 Initial-Value Problems
1.3 Differential Equation as Mathematical Models

1.1 Definitions and Terminology

DEFINITION: differential equation

An equation containing the derivative of one or more dependent variables, with respect to one or more independent variables is said to be a differential equation (DE).
(Zill, Definition 1.1, page 6).

1.1 Definitions and Terminology

Recall Calcu/us

Definition of a Derivative

If $y=f(x)$, the derivative of y or $f(x)$
With respect to x is defined as

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The derivative is also denoted by $y^{\prime}, \frac{d f}{d x}$ or $f^{\prime}(x)$

1.1 Definitions and Terminology

Recall the Exponential function

$$
y=f(x)=e^{2 x}
$$

\rightarrow dependent variable: y
\rightarrow independent variable: x

$$
\frac{d y}{d x}=\frac{d\left(e^{2 x}\right)}{d x}=e^{2 x}\left[\frac{d(2 x)}{d x}\right]=2 e^{2 x}=2 y
$$

1.1 Definitions and Terminology

Differential Equation :

Equations that involve dependent variables and their derivatives with respect to the independent variables.

Differential Equations are classified by

 type, order and linearity.
1.1 Definitions and Terminology

Differential Equations are classified by type, order and linearity.

TYPE
There are two main types of differential equation: "ordinary" and "partial".

1.1 Definitions and Terminology

Ordinary differential equation (ODE)

Differential equations that involve only ONE independent variable are called ordinary differential equations.

Examples:

$\frac{d y}{d x}+5 y=e^{x}, \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+6 y=0$, and $\frac{d x}{d t}+\frac{d y}{d t}=2 x+y$ \rightarrow only ordinary (or total) derivatives

1.1 Definitions and Terminology

Partial differential equation (PDE)
Differential equations that involve two or more independent variables are called partial differential equations.
Examples:
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-2 \frac{\partial u}{\partial t} \quad$ and $\quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
\rightarrow only partial derivatives

1.1 Definitions and Terminology

ORDER

The order of a differential equation is the order of the highest derivative found in the $D E$.
second order first order

1.1 Definitions and Terminology

$x y^{\prime}-y^{2}=e^{x} \rightarrow$ first order $\quad F\left(x, y, y^{\prime}\right)=0$
Written in differential form: $M(x, y) d x+N(x, y) d y=0$
$y^{\prime \prime}=x^{3}$
\rightarrow second order $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$

1.1 Definitions and Terminology LINEAR or NONLINEAR

An n-th order differential equation is said to be linear if the function $F\left(x, y, y^{\prime}, \ldots . . y^{(n)}\right)=0$ is linear in the variables $y, y^{\prime}, \ldots y^{(n-1)}$
$\rightarrow a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$
\rightarrow there are no multiplications among dependent variables and their derivatives. All coefficients are functions of independent variables.
A nonlinear ODE is one that is not linear, i.e. does not have the above form.

1.1 Definitions and Terminology LINEAR or NONLINEAR

$$
(y-x) d x+4 x d y=0 \quad \text { or } \quad 4 x \frac{d y}{d x}+(y-x)=0
$$

\rightarrow linear first-order ordinary differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

\rightarrow linear second-order ordinary differential equation

$$
\frac{d^{3} y}{d x^{3}}+3 x \frac{d y}{d x}-5 y=e^{x}
$$

\rightarrow linear third-order ordinary differential equation

1.1 Definitions and Terminology LINEAR or NONLINEAR

$$
(1-y) y^{\prime}+2 y=e^{x} \quad \text { coefficient depends on } y
$$

\rightarrow nonlinear first-order ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+\sin (y)=0
$$

nonlinear function of y

\rightarrow nonlinear second-order ordinary differential equation

$$
\frac{d^{4} y}{d x^{4}}+y^{2}=0 \quad \text { power not } 1
$$

\rightarrow nonlinear fourth-order ordinary differential equation

1.1 Definitions and Terminology LINEAR or NONLINEAR

NOTE:
$\sin (y)=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\frac{y^{7}}{7!}+\ldots$ $-\infty<x<\infty$

$$
\cos (y)=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\frac{y^{6}}{6!}+\ldots
$$

$$
-\infty<x<\infty
$$

1.1 Definitions and Terminology

Solutions of ODEs

DEFINITION: solution of an ODE
Any function ϕ, defined on an interval I and possessing at least n derivatives that are continuous
on I, which when substituted into an n-th order ODE reduces the equation to an identity, is said to be a solution of the equation on the interval.
(Zill, Definition 1.1, page 8).

1.1 Definitions and Terminology

Namely, a solution of an n-th order ODE is a function which possesses at least n derivatives and for which

$$
F\left(x, \phi(x), \phi^{\prime}(x), \phi^{(n)}(x)\right)=0 \quad \text { for all } x \text { in } I
$$

We say that satisfies the differential equation on I.

1.1 Definitions and Terminology

Verification of a solution by substitution
Example: $y^{\prime \prime}-2 y^{\prime}+y=0 \quad ; y=x e^{x}$
$\rightarrow y^{\prime}=x e^{x}+e^{x}, y^{\prime \prime}=x e^{x}+2 e^{x}$
\rightarrow left hand side:

$$
y^{\prime \prime}-2 y^{\prime}+y=\left(x e^{x}+2 e^{x}\right)-2\left(x e^{x}+e^{x}\right)+x e^{x}=0
$$

right-hand side: 0

The DE possesses the constant $\mathrm{y}=0 \boldsymbol{\rightarrow}$ trivial solution

1.1 Definitions and Terminology

DEFINITION: solution curve

 A graph of the solution of an ODE is called a , or an integral curve of the equation.
1.1 Definitions and Terminology

DEFINITION: families of solutions

A solution containing an arbitrary constant (parameter) represents a set $G(x, y, c)=0$ of solutions to an ODE called a one-parameter family of solutions.
A solution to an n-th order ODE is a \mathbf{n}-parameter family of solutions

$$
F\left(x, y, y^{\prime}, \ldots . . y^{(n)}\right)=0 .
$$

Since the parameter can be assigned an infinite number of values, an ODE can have an infinite number of solutions.

1.1 Definitions and Terminology

Verification of a solution by substitution
Example: $y^{\prime}+y=2$

$$
\begin{aligned}
& y^{\prime}+y=2 \\
& \varphi(x)=2+k e^{-x} \\
& \varphi^{\prime}(x)=-k e^{-x} \\
& \varphi^{\prime}(x)+\varphi(x)=-k e^{-x}+2+k e^{-x}=2
\end{aligned}
$$

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ${ }_{\text {tu }}$ is a trademark used herein under license.
Figure 1.1 Integral curves of $y^{\prime}+y=2$ for $k=0,3,-3,6$, and -6.

1.1 Definitions and Terminology

Verification of a solution by substitution
Example:

$$
y^{\prime}=\frac{y}{x}+1
$$

$$
\rightarrow \varphi(x)=x \ln (x)+C x \quad \text { for all } \quad x>0
$$

$$
\varphi^{\prime}(x)=\ln (x)+1+C
$$

$$
\varphi^{\prime}(x)=\frac{x \ln (x)+C x}{x}+1=\frac{\varphi(x)}{x}+1
$$

© 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ${ }_{\mathrm{ra}}$ is a trademark used herein under license.

Figure 1.2 Integral curves of $y^{\prime}+\frac{1}{x} y=e^{x}$ for $c=0,5,20,-6$, and -10 .

Second-Order Differential Equation

$\begin{array}{ll}\text { Example: } & \varphi(x)=6 \cos (4 x)-17 \sin (4 x) \\ \text { is a solution of } & y^{\prime \prime}+16 x=0\end{array}$
By substitution:

$$
\begin{aligned}
& \varphi^{\prime}=-24 \sin (4 x)-68 \cos (4 x) \\
& \varphi^{\prime \prime}=-96 \cos (4 x)+272 \sin (4 x) \\
& \varphi^{\prime \prime}+16 \varphi=0
\end{aligned}
$$

$$
\begin{aligned}
& F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 \\
& F\left(x, \varphi(x), \varphi^{\prime}(x), \varphi(x)^{\prime \prime}\right)=0
\end{aligned}
$$

Second-Order Differential Equation

Consider the simple, linear second-order equation

$$
\begin{aligned}
& y^{\prime \prime}-12 x=0 \\
\rightarrow & y^{\prime \prime}=12 x \quad, y^{\prime}=\int y^{\prime \prime}(x) d x=\int 12 x d x=6 x^{2}+C \\
\rightarrow & y=\int y^{\prime}(x) d x=\int\left(6 x^{2}+C\right) d x=2 x^{3}+C x+K
\end{aligned}
$$

To determine C and K , we need two initial conditions, one specify a point lying on the solution curve and the other its slope at that point, e.g. $y(0)=K, y^{\prime}(0)=C$

Second-Order Differential Equation

$$
\begin{aligned}
y^{\prime \prime} & =12 x \\
y & =2 x^{3}+C x+K
\end{aligned}
$$

IF only try $\mathrm{x}=\mathrm{x}_{1}$, and $\mathrm{x}=\mathrm{x}_{2}$
$\rightarrow y\left(x_{1}\right)=2 x_{1}^{3}+C x_{1}+K$

$$
y\left(x_{2}\right)=2 x_{2}^{3}+C x_{2}+K
$$

It cannot determine C and K ,

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ${ }_{\mathrm{Tw}}$ is a trademark used herein under license.

Figure 2.1 Graphs of $y=2 x^{3}+C x+K$ for various values of C and K.

To satisfy the I.C. $y(0)=3$ The solution curve must pass through (0,3)

To satisfy the I.C. $y(0)=3$, $y^{\prime}(0)=-1$, the solution curve must pass through $(0,3)$ having slope -1

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ${ }_{\mathrm{m}}$ is a trademark used herein under license.

Figure 2.3 Graph of $y=2 x^{3}-x+3$.

1.1 Definitions and Terminology

Solutions

General Solution: Solutions obtained from integrating the differential equations are called general solutions. The general solution of a nth order ordinary differential equation contains n arbitrary constants resulting from integrating times.
Particular Solution: Particular solutions are the solutions obtained by assigning specific values to the arbitrary constants in the general solutions.
Singular Solutions: Solutions that can not be expressed by the general solutions are called singular solutions.

1.1 Definitions and Terminology

DEFINITION: implicit solution

A relation $G(x, y)=0$ is said to be an implicit solution of an ODE on an interval I provided there exists at least one function ϕ that satisfies the relation as well as the differential equation on I.
\rightarrow a relation or expression $G(x, y)=0$ that defines a solution ϕ implicitly.

In contrast to an explicit solution $y=\phi(x)$

1.1 Definitions and Terminology

DEFINITION: implicit solution

Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation

$$
\begin{aligned}
& y^{2}+x y-2 x^{2}-3 x-2 y=C \\
& y-4 x-3+(x+2 y-2) y^{\prime}=0
\end{aligned}
$$

1.1 Definitions and Terminology

DEFINITION: implicit solution

Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation $y^{2}+x y-2 x^{2}-3 x-2 y=C$

$$
\begin{aligned}
& y-4 x-3+(x+2 y-2) y^{\prime}=0 \\
& d\left(y^{2}+x y-2 x^{2}-3 x-2 y\right) / d x=d(C) / d x \\
& ==>2 y y^{\prime}+y+x y^{\prime}-4 x-3-2 y^{\prime}=0 \\
& =\Rightarrow y-4 x-3+x y^{\prime}+2 y y^{\prime}-2 y^{\prime}=0 \\
& ==y-4 x-3+(x+2 y-2) y^{\prime}=0
\end{aligned}
$$

1.1 Definitions and Terminology

Conditions

Initial Condition: Constrains that are specified at the initial point, generally time point, are called initial conditions. Problems with specified initial conditions are called initial value problems.

Boundary Condition: Constrains that are specified at the boundary points, generally space points, are called boundary conditions. Problems with specified boundary conditions are called boundary value problems.

1.2 Initial-Value Problem

First- and Second-Order IVPS
Solve:
$\frac{d y}{d x}=f(x, y)$
Subject to: $y\left(x_{0}\right)=y_{0}$

Solve:

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Subject to: $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$

1.2 Initial-Value Problem

DEFINITION: initial value problem

 An initial value problem or IVP is a problem which consists of an n-th order ordinary differential equation along with n initial conditions defined at a point x_{0} found in the interval of definition I differential equation initial conditions$$
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

where \square are known constants.

1.2 Initial-Value Problem

THEOREM: Existence of a Unique Solution

Let R be a rectangular region in the xy -plane defined by $a \leq x \leq b, c \leq y \leq d$ that contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If $f(x, y)$ and of /oy are continuous on R, Then there exists some interval $I_{0}: x_{0}-h<x<x_{0}+h, h>0$ contained in $a \leq x \leq b$ and a unique function $y(x)$ defined on I_{0} that is a solution of the initial value problem.

