Partial Differential Equations

Table PT8.1

by Lale Yurttas, Texas
A\&M University

Finite Difference: Elliptic Equations Chapter 29

Solution Technique

- Elliptic equations in engineering are typically used to characterize steady-state, boundary value problems.
- For numerical solution of elliptic PDEs, the PDE is transformed into an algebraic difference equation.
- Because of its simplicity and general relevance to most areas of engineering, we will use a heated plate as an example for solving elliptic PDEs.

Figure 29.3

by Lale Yurttas, Texas
A\&M University

The Laplacian Difference Equations/

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0 & \text { Laplace Equation } \\
\frac{\partial^{2} T}{\partial x^{2}}=\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{\Delta x^{2}} & O\left[\Delta(x)^{2}\right] \\
\frac{\partial^{2} T}{\partial y^{2}}=\frac{T_{i, j+1}-2 T_{i, j}+T_{i, j-1}}{\Delta y^{2}} & O\left[\Delta(y)^{2}\right] \\
\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{\Delta x^{2}}+\frac{T_{i, j+1}-2 T_{i, j}+T_{i, j-1}}{\Delta y^{2}}=0 \\
\Delta x=\Delta y & \text { Laplacian difference } \\
T_{i+1, j}+T_{i-1, j}+T_{i, j+1}+T_{i, j-1}-4 T_{i, j}=0 & \underline{\text { equation. }}
\end{array}
\end{aligned}
$$

Figure 29.4

- In addition, boundary conditions along the edges must be specified to obtain a unique solution.
- The simplest case is where the temperature at the boundary is set at a fixed value, Dirichlet boundary condition.
- A balance for node $(1,1)$ is:

$$
\begin{aligned}
& T_{21}+T_{01}+T_{12}+T_{10}-4 T_{11}=0 \\
& T_{01}=75 \\
& T_{10}=0 \\
& -4 T_{11}+T_{12}+T_{21}=0
\end{aligned}
$$

- Similar equations can be developed for other interior points to result a set of simultaneous equations.
- The result is a set of nine simultaneous equations with nine unknowns:

$$
\begin{array}{rlllllllll}
4 T_{11} & -T_{21} & & -T_{12} & & & & & & =75 \\
-T_{11} & +4 T_{21} & -T_{13} & & -T_{22} & & & & & =0 \\
& -T_{21} & +4 T_{31} & & & -T_{32} & & & & =50 \\
-T_{11} & & & +4 T_{12} & -T_{22} & & -T_{13} & & & =75 \\
& -T_{21} & & -T_{12} & +4 T_{22} & -T_{32} & & -T_{23} & & =0 \\
& & -T_{31} & & -T_{22} & +4 T_{32} & & & -T_{33} & =50 \\
& & & -T_{12} & & & +4 T_{13} & -T_{23} & & =175 \\
& & & & -T_{22} & & -T_{13} & +4 T_{23} & -T_{33} & =100 \\
& & & & & -T_{32} & & -T_{23} & +4 T_{33} & =150
\end{array}
$$

by Lale Yurtas, Texas
A\&M University

