ENGINEERING MECHANICS – STATICS

Course

Engineering Mechanics – Statics

Class Room:

Group 101 room K-516

Saturday, Monday and Wednesday 8:00 – 9:00

Group 102 room K-517

Sunday and Tuesday
Group 103 room K-507
Sunday and Tuesday
9:30 – 11:00

Subject

Tutor:

M.Sc. Malek Abuwarda

www.iugaza.edu.ps/emp/mabuwarda

Subject • Grads: 30% Assignments Midterm exam 30% Final exam 40% Course Materials Lecture notes Power points slides Handout sheets Textbooks Engineering Mechanics: Statics 10th edition by R.C. Hibbeler

Instructional Objectives

- After completing the course, you should be able to:
 Analyze forces and find out the resultant forces in two and three dimension
 - Differentiate between various type of supports and draw free-body-diagram
 - Compute the reaction force, internal forces and bending moment at a specific point on a simple structure (beam, frame, truss)
 - Draw bending moment and shear force diagram to a simple structure.
 - Obtain centre of mass and centroid for deferent engineering shapes & moment of inertia for deferent sections

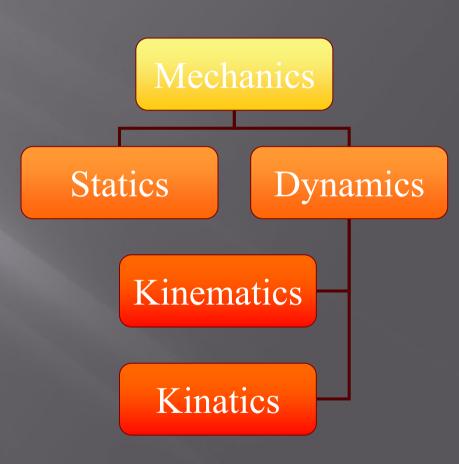
Course Outline

- Introduction to Statics
- Force System
 - Two-dimensional force systems
 - Three-dimensional force systems
- Equilibriums
 - Equilibrium in two dimensions
 - Equilibrium in three dimensions
- Structural Analysis
 - Trusses
 - Plane trusses
 - Space trusses
 - Frames and mechanics

Course Outline

Distributed Forces

- Centers of Mass and Centroids
- Beams-External Effects
- Beams-Internal effects
- Fluid Statics
- Area Moments of Inertia


Introduction to Mechanics

What is mechanics?

*Physical science deals with the state of rest or motion of bodies under the action of force

***** Why we study mechanics?

This science form the groundwork for further study in the design and analysis of structures

Essential ba Basic Terms

Statics: dealing with the equilibrium of a rigid-body at rest

- Rigid body: the relative movement between its parts are negligible
- Dynamics: dealing with a rigid-body in motion
- Length: applied to the linear dimension of a strait line or curved line
- Area: the two dimensional size of shape or surface
- Volume: the three dimensional size of the space occupied by substance
- Force: the action of one body on another whether it's a push or a pull force
- Mass: the amount of matter in a body
- Weight: the force with which a body is attracted toward the centre of the Earth
- **Particle:** a body of negligible dimension

• Four fundamental quantities in mechanics

- Mass
- Length
- Time
- Force
- Two different systems of units we dealing with during the course
 - U.S. Customary or British System of Units (FPS)
 - Length in feet (ft)
 - Time in Seconds (s)
 - Force in Pounds (lb)
 - International System of Units or Metric Units (SI)
 - Length in metre (m)
 - Time in Seconds (s)
 - Force in Newton (N)

Summery of the four fundamental quantities in the two system

Overtiter	SI Units		US Units	
Quantity	Unit	Symbol	Unit	Symbol
Mass	kilogram	kg	slug	-
Length	meter	m	foot	ft
Time	second	S	second	sec
Force	newton	Ν	pound	lb

Metric System (SI)

- SI System offers major advantages relative to the FPS system
 - Widely used throughout the world
 - Use one basic unit for length @ meter; while FPS uses many basic units @ inch, foot, yard, mile
 - SI based on multiples of 10, which makes it easier to use & learn whereas FPS is complicated, for example
 - SI system →1 meter = 100 centimeters, 1 kilometer = 1000 meters, etc
 - FPS system → 1 foot = 12 inches, 1 yard = 3 feet, 1 mile = 5280 feet, etc
- Metric System (SI)
 - Newton's second law F = m.a
 - Thus the force (N) = mass (kg) \times acceleration (m/s²)
 - Therefore 1 Newton is the force required to give a mass of 1 kg an acceleration of 1 m/s²

□ U.S. Customary System (FPS)

- Force (lb) = mass (slugs) × acceleration (ft/sec²)
 Thus (slugs) = lb.sec²/ft
- Therefore 1 slug is the mass which is given an acceleration of 1 ft/sec² when acted upon by a force of 1 lb

Conversion of Units

C	Quantity	FPS	Equals	SI
	Force	1 lb		4.448 N
ŝ	Mass	1 slug		14.593 kg
	Length	1 ft		0.304 m

- □ The standard value of g (gravitational acceleration)
 - SI units g = 9.806 m/s2
 - FPS units g = 32.174 ft/sec2