Distributed Forces:
Centroids and Centers of Gravity

Contents

Introduction

Center of Gravity of a 2D Body

Centroids and First Moments of Areas and Lines

Centroids of Common Shapes of Areas
Centroids of Common Shapes of Lines
Composite Plates and Areas
Sample Problem 5.1
Determination of Centroids by
Integration
Sample Problem 5.4

Theorems of Pappus-Guldinus
Sample Problem 5.7
Distributed Loads on Beams
Sample Problem 5.9
Center of Gravity of a 3D Body: Centroid of a Volume

Centroids of Common 3D Shapes

Composite 3D Bodies

Sample Problem 5.12

Introduction

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body.
- The centroid of an area is analogous to the center of gravity of a body. The concept of the first moment of an area is used to locate the centroid.
- Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus.

Center of Gravity of a 2D Body

- Center of gravity of a plate

- Center of gravity of a wire

$$
\begin{aligned}
\sum M_{y} \quad \bar{x} W & =\sum x \Delta W \\
& =\int x d W \\
\sum M_{y} \quad \bar{y} W & =\sum y \Delta W \\
& =\int y d W
\end{aligned}
$$

Centroids and First IMoments of Areas and Lines

$\bar{x} W=\int x d W$
$\bar{x}(\gamma A t)=\int x(\gamma t) d A$
$\bar{x} A=\int x d A=Q_{y}$
$=$ first moment with respect to y
$\bar{y} A=\int y d A=Q_{x}$
$=$ first moment with respect to x

$$
\begin{aligned}
\bar{x} W & =\int x d W \\
\bar{x}(\gamma L a) & =\int x(\gamma a) d L \\
\bar{x} L & =\int x d L \\
\bar{y} L & =\int y d L
\end{aligned}
$$

(a)

- An area is symmetric with respect to an axis $B B^{\prime}$ if for every point P there exists a point P^{\prime} such that $P P^{\prime}$ is perpendicular to $B B^{\prime}$ and is divided into two equal parts by $B B^{\prime}$.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element $d A$ at (x, y) there exists an area $d A$ ' of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area	$\rightarrow \bar{x} \leftarrow \quad O_{\leftarrow} \leftarrow a \rightarrow$	0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{a h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

Centroids of Common Shapes of Lines

| Shape |
| :---: | :---: | :---: | :---: | :---: |
| Quarter-circular
 arc |
| Semicircular are |

Composite Plates and Areas

- Composite plates

$$
\begin{aligned}
& \bar{X} \sum W=\sum \bar{x} W \\
& \bar{Y} \sum W=\sum \bar{y} W
\end{aligned}
$$

- Composite area

$$
\begin{aligned}
& \bar{X} \sum A=\sum \bar{x} A \\
& \bar{Y} \sum A=\sum \bar{y} A
\end{aligned}
$$

Sample Problem 5.1

For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

Sample Problem 5.1

- Find the total area and first moments of the

$$
Q_{x}=+506.2 \times 10^{3} \mathrm{~mm}^{3}
$$

$$
Q_{y}=+757.7 \times 10^{3} \mathrm{~mm}^{3}
$$

Sample Problem 5.1

- Compute the coordinates of the area centroid by dividing the first moments by the total area.

$$
\begin{array}{r}
\bar{X}=\frac{\sum \bar{x} A}{\sum A}=\frac{+757.7 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}} \\
\bar{X}=54.8 \mathrm{~mm} \\
\bar{Y}=\frac{\sum \bar{y} A}{\sum A}=\frac{+506.2 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}} \\
\bar{Y}=36.6 \mathrm{~mm}^{2}
\end{array}
$$

Determination of Centroids by

$\bar{x} A=\int x d A=\iint x d x d y=\int \frac{1}{x} e l d A \in$ © atdon
 $\bar{y} A=\int y d A=\iint y d x d y=\int \bar{y}_{e l} d A$ rectangle or strip.

$$
\begin{aligned}
\bar{x} A & =\int \bar{x}_{e l} d A \\
& =\int x(y d x) \\
\bar{y} A & =\int \bar{y}_{e l} d A \\
& =\int \frac{y}{2}(y d x)
\end{aligned}
$$

$$
\begin{aligned}
\bar{x} A & =\int \bar{x}_{e l} d A \\
& =\int \frac{a+x}{2}[(a-x) d x]
\end{aligned}
$$

$$
\begin{aligned}
\bar{y} A & =\int \bar{y}_{e l} d A \\
& =\int y[(a-x) d x]
\end{aligned}
$$

$\bar{x} A=\int \bar{x}_{e l} d A$

$$
=\int \frac{2 r}{3} \cos \theta\left(\frac{1}{2} r^{2} d \theta\right)
$$

$$
\bar{y} A=\int \bar{y}_{e l} d A
$$

$$
=\int \frac{2 r}{3} \sin \theta\left(\frac{1}{2} r^{2} d \theta\right)
$$

Sample Problem 5.4.

SOLUTION:

- Determine the constant k .
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates. location of the centroid of a parabolic spandrel.

Sample Problem 5.4.

SOLULIION:

- Determine the constant k .

$$
\begin{aligned}
& y=k x^{2} \\
& b=k a^{2} \Rightarrow k=\frac{b}{a^{2}}
\end{aligned}
$$

$$
y=\frac{b}{a^{2}} x^{2} \quad \text { or } \quad x=\frac{a}{b^{1 / 2}} y^{1 / 2}
$$

- Evaluate the total area.

$$
\begin{aligned}
A & =\int d A \\
& =\int y d x=\int_{0}^{a} \frac{b}{a^{2}} x^{2} d x=\left[\frac{b}{a^{2}} \frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{a b}{3}
\end{aligned}
$$

Sample Problem 5.4

- Using vertical strips, perform a single integration to find the first moments.

$$
\begin{aligned}
Q_{y} & =\int \bar{x}_{e l} d A=\int x y d x=\int_{0}^{a} x\left(\frac{b}{a^{2}} x^{2}\right) d x \\
& =\left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a}=\frac{a^{2} b}{4} \\
Q_{x} & =\int \bar{y}_{e l} d A=\int \frac{y}{2} y d x=\int_{0}^{a} \frac{1}{2}\left(\frac{b}{a^{2}} x^{2}\right)^{2} d x \\
& =\left[\frac{b^{2}}{2 a^{4}} \frac{x^{5}}{5}\right]_{0}^{a}=\frac{a b^{2}}{10}
\end{aligned}
$$

Sample Problem 5.4

- Or, using horizontal strips, perform a single
 integration to find the first moments.

$$
\begin{aligned}
Q_{y} & =\int \bar{x}_{e l} d A=\int \frac{a+x}{2}(a-x) d y=\int_{0}^{b} \frac{a^{2}-x^{2}}{2} d y \\
& =\frac{1}{2} \int_{0}^{b}\left(a^{2}-\frac{a^{2}}{b} y\right) d y=\frac{a^{2} b}{4} \\
Q_{x} & =\int \bar{y}_{e l} d A=\int y(a-x) d y=\int y\left(a-\frac{a}{b^{1 / 2}} y^{1 / 2}\right) d y \\
& =\int_{0}^{b}\left(a y-\frac{a}{b^{1 / 2}} y^{3 / 2}\right) d y=\frac{a b^{2}}{10}
\end{aligned}
$$

Sample Problem 5.4.

- Evaluate the centroid coordinates.

$$
\begin{aligned}
& \bar{x} A=Q_{y} \\
& \bar{x} \frac{a b}{3}=\frac{a^{2} b}{4} \\
& \bar{x}=\frac{3}{4} a \\
& \bar{y} A=Q_{x} \\
& \bar{y} \frac{a b}{3}=\frac{a b^{2}}{10} \quad \bar{y}=\frac{3}{10} b
\end{aligned}
$$

Thanrame \cap Pannise=Guldinus

- Surface of revolution is generated by rotating a plane curve about a fixed axis.

- Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$
A=2 \pi \bar{y} L
$$

Thenrems of Pannus-Guldinus

Sphere

Cone

Torus

- Body of revolution is generated by rotating a plane area about a fixed axis.

- Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$
V=2 \pi \bar{y} A
$$

Sample Problem 5.7

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.
The outside diameter of a pulley is 0.8 m , and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is $\rho=7.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ determine the mass and weight of the rim.

Sample Problem 5.7

SOLUTION

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.

375 mm

365 mm

	Area, mm ${ }^{2}$	$\bar{y}, \mathrm{~mm}$	Distance Traveled by $C, \mathrm{~mm}$	Volume, mm^{3}
I	$\begin{aligned} & +5000 \\ & -1800 \end{aligned}$	$\begin{aligned} & 375 \\ & 365 \end{aligned}$	$\begin{aligned} & 2 \pi(375)=2356 \\ & 2 \pi(365)=2293 \end{aligned}$	$(5000)(2356)=11.78 \times 10^{6}$
II				$(-1800)(2293)=-4.13 \times 10^{6}$
				Volume of rim $=7.65 \times 10^{6}$

$m=\rho V=\left(7.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(7.65 \times 10^{6} \mathrm{~mm}^{3}\right)\left(10^{-9} \mathrm{~m}^{3} / \mathrm{mm}^{3}\right) \quad m=60.0 \mathrm{~kg}$ $W=m g=(60.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \quad W=589 \mathrm{~N}$

Distributed Loads on Beams

$$
W=\int_{0}^{L} w d x=\int d A=A
$$

$(O P) W=\int x d W$
$(O P) A=\int_{0}^{L} x d A=\bar{x} A$

- A distributed load is represented by plotting the load per unit length, $w(\mathrm{~N} / \mathrm{m})$. The total load is equal to the area under the load curve.
- A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

Sample Problem 5.9

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.

Sample Problem 5.9

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$
F=18.0 \mathrm{kN}
$$

- The line of action of the concentrated load passes through the centroid of the area under the curve.

$$
\bar{X}=\frac{63 \mathrm{kN} \cdot \mathrm{~m}}{18 \mathrm{kN}} \quad \bar{X}=3.5 \mathrm{~m}
$$

Component	A, kN	$\bar{x}, \mathrm{~m}$	$\bar{x} A, \mathrm{kN} \cdot \mathrm{m}$
Triangle I	4.5	2	9
Triangle II	13.5	4	54
	$\Sigma A=18.0$		$\Sigma \bar{x} A=63$

Sample Problem 5.9

- Determine the support reactions by summing moments about the beam ends.

$$
\begin{gathered}
\sum M_{A}=0: \quad B_{y}(6 \mathrm{~m})-(18 \mathrm{kN})(3.5 \mathrm{~m})=0 \\
B_{y}=10.5 \mathrm{kN} \\
\sum M_{B}=0:-A_{y}(6 \mathrm{~m})+(18 \mathrm{kN})(6 \mathrm{~m}-3.5 \mathrm{~m})=0 \\
A_{y}=7.5 \mathrm{kN}
\end{gathered}
$$

Center of Gravity of a 3D Body:

- Center of gravity G

$$
-W \vec{j}=\sum(-\Delta W \vec{j})
$$

$\vec{r}_{G} \times(-W \vec{j})=\sum[\vec{r} \times(-\Delta W \vec{j})]$
$\vec{r}_{G} W \times(-\vec{j})=\left(\sum \vec{r} \Delta W\right) \times(-\vec{j})$
$W=\int d W \quad \vec{r}_{G} W=\int \vec{r} d W$

- Results are independent of body orientation, $\bar{x} W=\int x d W \quad y W=\int y d W \quad z W=\int z d W$
- For homogeneous bodies,

$$
\begin{aligned}
& W=\gamma V \text { and } d W=\gamma d V \\
& \bar{x} V=\int x d V \quad \bar{y} V=\int y d V \quad \bar{z} V=\int z d V
\end{aligned}
$$

Centroids of Common 3D

| Shape |
| :---: | :---: |
| Hemisphere |
| Semiellipsoid |
| of revolution |
| Paraboloid |
| of revolution |

Composite 3D Bodies

- Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$
\bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum y W \quad \bar{Z} \sum W=\sum z W
$$

- For homogeneous bodies,

$$
\bar{X} \sum V=\sum \bar{x} V \quad \bar{Y} \sum V=\sum \bar{y} V \quad \bar{Z} \sum V=\sum z V
$$

Sample Problem 5.12

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in .

	v, in^{3}	$\overline{\mathrm{x}}$, in.	\bar{y}, in.	\bar{z}, in.	$\bar{x} V$, in ${ }^{4}$	$\bar{y} V$, in ${ }^{4}$	$\bar{z} V$, in ${ }^{4}$
I	$(4.5)(2)(0.5)=4.5$	0.25	-1	2.25	1.125	-4.5	10.125
II	${ }_{\frac{1}{4} \pi(2)^{2}(0.5)=1.571}$	1.3488	-0.8488	0.25	2.119	-1.333	0.393
III	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	3.5	-0.098	0.393	-1.374
IV	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	1.5	-0.098	0.393	-0.589
	$\Sigma V=5.286$				$\Sigma \bar{x} V=3.048$	$\Sigma \bar{y} V=-5.047$	$\Sigma \bar{z} V=8.555$

Samnla Prohlam 5 19

	V, in 3	\bar{x}, in.	\bar{y}, in.	\bar{z}, in.	$\bar{x} V$, in 4	$\bar{y} V$, in 4	$\bar{z} V$, in 4							
I	$(4.5)(2)(0.5)=4.5$	0.25	-1	2.25	1.125	-4.5	10.125							
II	$\frac{1}{4} \pi(2)^{2}(0.5)=1.571$	1.3488	-0.8488	0.25	2.119	-1.333	0.393							
III	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	3.5	-0.098	0.393	-1.374							
IV	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	1.5	-0.098	0.393	-0.589							
	$\Sigma V=5.286$											$\Sigma \bar{x} V=3.048$	$\Sigma \bar{y} V=-5.047$	$\Sigma \bar{z} V=8.555$

$$
\begin{aligned}
& \bar{X}=\sum \bar{x} V / \sum V=\left(3.08 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
& \bar{X}=0.577 \mathrm{in.} . \\
& \bar{Y}=\sum \bar{y} V / \sum V=\left(-5.047 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
& \bar{Y}=0.577 \mathrm{in.} \\
& \bar{Z}=\sum \bar{z} V / \sum V=\left(1.618 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
& \bar{Z}=0.577 \mathrm{in.} \\
& 5-32
\end{aligned}
$$

