Distributed Forces:

Centroids and Centers
of Gravity

#### Contents

**Introduction** 

Center of Gravity of a 2D Body

Centroids and First Moments of Areas and Lines

Centroids of Common Shapes of Areas

Centroids of Common Shapes of Lines

Composite Plates and Areas

Sample Problem 5.1

Determination of Centroids by

Integration

Sample Problem 5.4

Theorems of Pappus-Guldinus

Sample Problem 5.7

Distributed Loads on Beams

Sample Problem 5.9

Center of Gravity of a 3D Body:

Centroid of a Volume

Centroids of Common 3D Shapes

Composite 3D Bodies

Sample Problem 5.12

#### Introduction

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the *center of gravity* for the body.
- The *centroid of an area* is analogous to the center of gravity of a body. The concept of the *first moment of an area* is used to locate the centroid.
- Determination of the area of a *surface of revolution* and the volume of a *body of revolution* are accomplished with the *Theorems of Pappus-Guldinus*.

## Center of Gravity of a 2D Body

• Center of gravity of a plate



• Center of gravity of a wire



$$\sum M_{y} \quad \overline{x}W = \sum x\Delta W$$

$$= \int x \, dW$$

$$\sum M_{y} \quad \overline{y}W = \sum y\Delta W$$

$$= \int y \, dW$$

# Centroids and First Moments of Areas and Lines





$$\overline{x}W = \int x \, dW$$

$$\overline{x}(yAt) = \int x \, (yt) \, dA$$

$$\overline{x}A = \int x \, dA = Q_y$$

$$= \text{first moment wit h respect to } y$$

$$\overline{y}A = \int y \, dA = Q_x$$

$$= \text{first moment wit h respect to } x$$

$$\bar{x}W = \int x \, dW$$

$$\bar{x}(\gamma La) = \int x(\gamma a) dL$$

$$\bar{x}L = \int x \, dL$$

$$\bar{y}L = \int y \, dL$$

#### First Moments of Areas and Lines











- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA of equal area at (-x,-y).
- The centroid of the area coincides with the center of symmetry.

#### **Centroids of Common Shapes of**

| Shape                      | The artificial and the section is a finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\overline{x}$                 | $\overline{y}$      | Area                |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|---------------------|
| Triangular area            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>y</i>                       | <u>h</u> 3          | $\frac{bh}{2}$      |
| Quarter-circular area      | c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{4r}{3\pi}$              | $\frac{4r}{3\pi}$   | $\frac{\pi r^2}{4}$ |
| Semicircular area          | $Q$ $\overline{x}$ $Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                              | $\frac{4r}{3\pi}$   | $\frac{\pi r^2}{2}$ |
| Quarter-elliptical<br>area | C C b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{4a}{3\pi}$              | $\frac{4b}{3\pi}$   | $\frac{\pi ab}{4}$  |
| Semielliptical<br>area     | $0$ $\overline{x}$ $0$ $a$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                              | $\frac{4b}{3\pi}$   | $\frac{\pi ab}{2}$  |
| Semiparabolic<br>area      | - a -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 <u>a</u><br>8                | $\frac{3h}{5}$      | 2 <i>ah</i> 3       |
| Parabolic area             | $0$ $\overline{x}$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                              | $\frac{3h}{5}$      | 4 <i>ah</i> 3       |
| Parabolic spandrel         | $O = \frac{1}{x} $ $V = kx^{2}$ $V$ | $\frac{3a}{4}$                 | $\frac{3h}{10}$     | $\frac{ah}{3}$      |
| General spandrel           | $Q = kx^{n}$ $Q =$     | $\frac{n+1}{n+2}a$             | $\frac{n+1}{4n+2}h$ | $\frac{ah}{n+1}$    |
| Circular sector            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2r\sin\alpha}{3\alpha}$ | 0                   | $lpha r^2$          |

# Centroids of Common Shapes of Lines

| Shape                   | 4                                                                                                                     | $\overline{x}$                 | $\overline{y}$   | Length            |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|-------------------|
| Quarter-circular<br>arc | C                                                                                                                     | $\frac{2r}{\pi}$               | $\frac{2r}{\pi}$ | $\frac{\pi r}{2}$ |
| Semicircular arc        | $O = \begin{bmatrix} \overline{y} & C \\ \overline{x} \end{bmatrix}$                                                  | 0                              | $\frac{2r}{\pi}$ | πτ                |
| Arc of circle           | $ \begin{array}{c c} \hline  & \overline{\alpha} & C \\ \hline  & \overline{\alpha} & \overline{\alpha} \end{array} $ | $\frac{r \sin \alpha}{\alpha}$ | 0                | 2ar               |

## **Composite Plates and Areas**



• Composite plates

$$\overline{X} \sum W = \sum \overline{x} W$$

$$\overline{Y} \sum W = \sum \overline{y} W$$



• Composite area

$$\overline{X} \sum A = \sum \overline{x} A$$
$$\overline{Y} \sum A = \sum \overline{y} A$$



For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid.

#### **SOLUTION**:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.



| Component                                     | A, mm²                                                                                                                                                          | $\overline{x}$ , mm  | $\bar{y}$ , mm            | $\bar{x}A$ , mm <sup>3</sup>                                                                     | <i>ȳA</i> , mm³                                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Rectangle<br>Triangle<br>Semicircle<br>Circle | $(120)(80) = 9.6 \times 10^{3}$ $\frac{1}{2}(120)(60) = 3.6 \times 10^{3}$ $\frac{1}{2}\pi(60)^{2} = 5.655 \times 10^{3}$ $-\pi(40)^{2} = -5.027 \times 10^{3}$ | 60<br>40<br>60<br>60 | 40<br>-20<br>105.46<br>80 | $+576 \times 10^{3}$<br>$+144 \times 10^{3}$<br>$+339.3 \times 10^{3}$<br>$-301.6 \times 10^{3}$ | $+384 \times 10^{3}$ $-72 \times 10^{3}$ $+596.4 \times 10^{3}$ $-402.2 \times 10^{3}$ |
|                                               | $\Sigma A = 13.828 \times 10^3$                                                                                                                                 |                      |                           | $\Sigma \overline{x}A = +757.7 \times 10^3$                                                      | $\Sigma \overline{y}A = +506.2 \times 10^3$                                            |

• Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

$$Q_x = +506.2 \times 10^3 \,\text{mm}^3$$
$$Q_y = +757.7 \times 10^3 \,\text{mm}^3$$

• Compute the coordinates of the area centroid by dividing the first moments by the total area.



$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{X} = 54.8 \, \mathrm{mm}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{Y} = 36.6 \, \mathrm{mm}$$

# **Determination of Centroids by**

$$\bar{x}A = \int x dA = \iint x dx dy = \int \bar{x}_{el} dA = 0$$

$$\bar{y}A = \int y dA = \iint y \, dx \, dy = \int \bar{y}_{el} \, dA$$

rectangle or strip.



$$\bar{x}A = \int \bar{x}_{el} dA$$
$$= \int x (ydx)$$
$$\bar{y}A = \int \bar{y}_{el} dA$$
$$= \int \frac{y}{2} (ydx)$$



$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int \frac{a+x}{2} [(a-x)dx]$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$A = \int y_{el} \, dA$$
$$= \int y \left[ (a - x) \, dx \right]$$



$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int \frac{2r}{3} \cos \theta \left( \frac{1}{2} r^2 d\theta \right)$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$= \int \frac{2r}{3} \sin \theta \left( \frac{1}{2} r^2 d\theta \right)$$



Determine by direct integration the location of the centroid of a parabolic spandrel.

#### **SOLUTION**:

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.





#### **SOLUTION:**

• Determine the constant k.

$$y = k x^{2}$$

$$b = k a^{2} \implies k = \frac{b}{a^{2}}$$

$$y = \frac{b}{a^{2}} x^{2} \quad or \quad x = \frac{a}{b^{1/2}} y^{1/2}$$

• Evaluate the total area.

$$A = \int dA$$

$$= \int y \, dx = \int_0^a \frac{b}{a^2} x^2 dx = \left[ \frac{b}{a^2} \frac{x^3}{3} \right]_0^a$$

$$=\frac{ab}{3}$$

• Using vertical strips, perform a single integration to find the first moments.



$$Q_{y} = \int \bar{x}_{el} dA = \int xy dx = \int_{0}^{a} x \left(\frac{b}{a^{2}} x^{2}\right) dx$$

$$= \left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \bar{y}_{el} dA = \int \frac{y}{2} y dx = \int_{0}^{a} \frac{1}{2} \left(\frac{b}{a^{2}} x^{2}\right)^{2} dx$$

$$= \left[\frac{b^{2}}{2a^{4}} \frac{x^{5}}{5}\right]_{0}^{a} = \frac{ab^{2}}{10}$$



Or, using horizontal strips, perform a single integration to find the first moments.

$$Q_{y} = \int \bar{x}_{el} dA = \int \frac{a+x}{2} (a-x) dy = \int_{0}^{b} \frac{a^{2}-x^{2}}{2} dy$$

$$= \frac{1}{2} \int_{0}^{b} \left( a^{2} - \frac{a^{2}}{b} y \right) dy = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \bar{y}_{el} dA = \int y(a-x) dy = \int y \left( a - \frac{a}{b^{1/2}} y^{1/2} \right) dy$$

$$= \int_{0}^{b} \left( ay - \frac{a}{b^{1/2}} y^{3/2} \right) dy = \frac{ab^{2}}{10}$$



• Evaluate the centroid coordinates.

$$\bar{x}A = Q_y$$

$$\bar{x}\frac{ab}{3} = \frac{a^2b}{4}$$

$$\bar{x} = \frac{3}{4}a$$

$$\bar{y}A = Q_x$$

$$\bar{y}\frac{ab}{3} = \frac{ab^2}{10}$$

$$\overline{y} = \frac{3}{10}b$$

## Theorems of Pannus-Guldinus



• Surface of revolution is generated by rotating a plane curve about a fixed axis.



• Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$A = 2\pi \bar{y}L$$

## Theorems of Pannus-Guldinus



• Body of revolution is generated by rotating a plane area about a fixed axis.



• Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$V = 2\pi \bar{y} A$$



The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is  $\rho = 7.85 \times 10^3 \text{ kg/m}^3$  determine the mass and weight of the rim.

#### **SOLUTION**:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.

#### **SOLUTION**

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.

| 50 mm I G | 30 mm H C II |
|-----------|--------------|
| 375 mm    | -<br>365 mm  |
|           |              |

|         | Area, mm²      | <u>y</u> , mm | Distance Traveled by <i>C</i> , mm       | Volume, mm <sup>3</sup>                                                   |
|---------|----------------|---------------|------------------------------------------|---------------------------------------------------------------------------|
| I<br>II | +5000<br>-1800 | 375<br>365    | $2\pi(375) = 2356$<br>$2\pi(365) = 2293$ | $(5000)(2356) = 11.78 \times 10^6$<br>$(-1800)(2293) = -4.13 \times 10^6$ |
|         | 4              |               |                                          | Volume of rim = $7.65 \times 10^6$                                        |

$$m = \rho V = (7.85 \times 10^3 \text{ kg/m}^3)(7.65 \times 10^6 \text{ mm}^3)(10^{-9} \text{ m}^3/\text{mm}^3)$$
  $m = 60.0 \text{ kg}$   
 $W = mg = (60.0 \text{ kg})(9.81 \text{ m/s}^2)$   $W = 589 \text{ N}$ 

#### Distributed Loads on Beams



$$W = \int_{0}^{L} w dx = \int dA = A$$

• A distributed load is represented by plotting the load per unit length, w (N/m). The total load is equal to the area under the load curve.

$$(OP)W = \int x dW$$
$$(OP)A = \int_{0}^{L} x dA = \bar{x}A$$

• A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.



A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

#### **SOLUTION**:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.



#### **SOLUTION**:

• The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$F = 18.0 \, \text{kN}$$



• The line of action of the concentrated load passes through the centroid of the area under the curve.

$$\overline{X} = \frac{63 \text{ kN} \cdot \text{m}}{18 \text{ kN}}$$

$$\overline{X} = 3.5 \text{ m}$$



| Component       | A, kN             | $\bar{x}$ , m | <i>⊼A</i> , kN⋅m            |
|-----------------|-------------------|---------------|-----------------------------|
| Triangle I      | 4.5               | 2             | 9                           |
| Triangle II     | 13.5              | 4             | 54                          |
| Daniella, Maria | $\Sigma A = 18.0$ |               | $\Sigma \overline{x}A = 63$ |





• Determine the support reactions by summing moments about the beam ends.

$$\sum M_A = 0$$
:  $B_v(6 \text{ m}) - (18 \text{ kN})(3.5 \text{ m}) = 0$ 

$$B_y = 10.5 \, \text{kN}$$

$$\sum M_B = 0$$
:  $-A_y(6 \text{ m}) + (18 \text{ kN})(6 \text{ m} - 3.5 \text{ m}) = 0$ 

$$A_v = 7.5 \text{ kN}$$

# Center of Gravity of a 3D Body:



• Center of gravity G

$$-W\vec{j} = \sum \left(-\Delta W\vec{j}\right)$$

$$\vec{r}_G \times (-W\vec{j}) = \sum [\vec{r} \times (-\Delta W\vec{j})]$$
$$\vec{r}_G W \times (-\vec{j}) = (\sum \vec{r} \Delta W) \times (-\vec{j})$$

$$W = \int dW \qquad \vec{r}_G W = \int \vec{r} \, dW$$

• Results are independent of body orientation,

$$\bar{x}W = \int xdW \quad \bar{y}W = \int ydW \quad \bar{z}W = \int zdW$$

For homogeneous bodies,

$$W = \gamma V$$
 and  $dW = \gamma dV$ 

$$\bar{x}V = \int x dV \quad \bar{y}V = \int y dV \quad \bar{z}V = \int z dV$$

#### **Centroids of Common 3D**

| , |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21             |                         | pes     |                         |               |                          |  |
|---|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------|-------------------------|---------------|--------------------------|--|
|   | Shape                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{x}$ | Volume                  | 762     |                         | 30            |                          |  |
|   | Hemisphere                     | $\overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 <u>a</u> 8   | $\frac{2}{3}\pi a^3$    | Cone    |                         | $\frac{h}{4}$ | $rac{1}{3}$ $\pi a^2 h$ |  |
|   | Semiellipsoid<br>of revolution | $\begin{array}{c} & & \\ \downarrow & \\$ | 3h/8           | $rac{2}{3}\pi a^2 h$   | Pyramid | $b$ $a$ $-\overline{x}$ | $\frac{h}{4}$ | $\frac{1}{3}$ abh        |  |
|   | Paraboloid<br>of revolution    | h d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{h}{3}$  | $rac{1}{2}  \pi a^2 h$ |         |                         |               |                          |  |

#### Composite 3D Bodies



• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$\overline{X} \sum W = \sum \overline{x}W \quad \overline{Y} \sum W = \sum \overline{y}W \quad \overline{Z} \sum W = \sum \overline{z}W$$

• For homogeneous bodies,

$$\overline{X}\sum V = \sum \overline{x}V \quad \overline{Y}\sum V = \sum \overline{y}V \quad \overline{Z}\sum V = \sum \overline{z}V$$





Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.

SULUTIUN.

• Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.









|                      | V, in <sup>3</sup>                                                                                                       | <i>x</i> , in.                 | ӯ, in.                    | ₹, in.                     | $\bar{\chi}V$ , in <sup>4</sup>    | <i>ӯѴ</i> , in⁴                  | ≅V, in⁴                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|----------------------------|------------------------------------|----------------------------------|----------------------------------|
| I<br>II<br>III<br>IV | $(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^{2}(0.5) = 1.571$ $-\pi(0.5)^{2}(0.5) = -0.3927$ $-\pi(0.5)^{2}(0.5) = -0.3927$ | 0.25<br>1.3488<br>0.25<br>0.25 | -1<br>-0.8488<br>-1<br>-1 | 2.25<br>0.25<br>3.5<br>1.5 | 1.125<br>2.119<br>-0.098<br>-0.098 | -4.5<br>-1.333<br>0.393<br>0.393 | 10.125 $0.393$ $-1.374$ $-0.589$ |
|                      | $\Sigma V = 5.286$                                                                                                       |                                |                           |                            | $\Sigma \overline{x}V = 3.048$     | $\Sigma \overline{y}V = -5.047$  | $\Sigma \overline{z}V = 8.555$   |

| -                    | V, in <sup>3</sup>                                                                                                 | $\overline{x}$ , in.           | $\overline{y}$ , in.      | ₹, in.                     | $\bar{\chi}V$ , in <sup>4</sup>    | ӯѴ, in⁴                          | ₹V, in⁴                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|----------------------------|------------------------------------|----------------------------------|----------------------------------|
| I<br>II<br>III<br>IV | $(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^2(0.5) = 1.571$ $-\pi(0.5)^2(0.5) = -0.3927$ $-\pi(0.5)^2(0.5) = -0.3927$ | 0.25<br>1.3488<br>0.25<br>0.25 | -1<br>-0.8488<br>-1<br>-1 | 2.25<br>0.25<br>3.5<br>1.5 | 1.125<br>2.119<br>-0.098<br>-0.098 | -4.5<br>-1.333<br>0.393<br>0.393 | 10.125 $0.393$ $-1.374$ $-0.589$ |
|                      | $\Sigma V = 5.286$                                                                                                 |                                |                           |                            | $\Sigma \overline{x}V = 3.048$     | $\Sigma \overline{y}V = -5.047$  | $\Sigma \overline{z}V = 8.555$   |



$$\overline{X} = \sum \overline{x}V/\sum V = (3.08 \text{ in}^4)/(5.286 \text{ in}^3)$$

 $\bar{X} = 0.577 \text{ in.}$ 

$$\overline{Y} = \sum \overline{y}V/\sum V = (-5.047 \text{ in}^4)/(5.286 \text{ in}^3)$$

 $\overline{Y} = 0.577 \text{ in.}$ 

$$\overline{Z} = \sum \overline{z}V/\sum V = (1.618 \text{ in}^4)/(5.286 \text{ in}^3)$$

 $\bar{Z} = 0.577 \, \text{in.}$