Pure Bending

- -Axial
- Torsion
- Bending

Introduction

Eccentric Loading

Pure Bending

Symmetric Member in Pure Bending

M = Bending Moment

Sign Conventions for M:

Force Analysis – Equations of Equilibrium

$$\tau_{xz} = \tau_{xy} = 0$$

$\Sigma \mathbf{F}_{\mathbf{x}} = 0$	$\int \sigma_x dA = 0$	(4.1)
$\Sigma M_{y-axis} = 0$	$\int z \sigma_x dA = 0$	(4.2)
$\Sigma M_{z-axis} = 0$	$\int (-y\sigma_x dA) = M$	(4.3)

Deformation in a Symmetric Member in Pure Bending

Plane CAB is the Plane of Symmetry

Assumptions of Beam Theory:

1. Any cross section \perp to the beam axis remains plane

2. The plane of the section passes through the center of curvature (Point C).

The Assumptions Result in the Following Facts:

1.
$$\tau_{xy} = \tau_{xz} = 0 \implies \gamma_{xy} = \gamma_{xz} = 0$$

2. $\sigma_y = \sigma_z = \tau_{yz} = 0$

The only non-zero stress: $\sigma_x \neq 0 \rightarrow$ Uniaxial Stress

The Neutral Axis (surface) : $\sigma_x = 0 \& \epsilon_x = 0$

 $L = \rho \theta \quad \text{Line DE} \quad (4.4)$ Where $\rho = \text{radius of curvature}$ $\theta = \text{the central angle}$ $L = (\rho - \gamma)\theta \quad \text{Line JK} \quad (4.5)$

Before deformation: DE = **JK**

Therefore,
$$\delta = L - L$$
 (4.6)

 $\delta = (\rho - y)\theta - \rho\theta = -y\theta$

The Longitudinal Strain $\varepsilon_x =$

 ε_x varies linearly with the distance y from the neutral surface

(4.9)

The max value of ε_x occurs at the top or the bottom fiber:

$$\mathcal{E}_m = \frac{c}{\rho}$$

Combining Eqs (4.8) & (4.9) yields

 $\boldsymbol{\varepsilon}_{x} = -\frac{y}{c} \boldsymbol{\varepsilon}_{m} \qquad (4.10)$

Stresses and Deformation is in the Elastic Range

For elastic response – Hooke's Law

 σ_x

$$\sigma_x = E \varepsilon_x \tag{4.11}$$

$$\mathcal{E}_x = -\frac{\mathcal{Y}}{c} \mathcal{E}_m \qquad (4.10)$$

$$\boldsymbol{E}\boldsymbol{\varepsilon}_{x}=-\frac{\boldsymbol{y}}{\boldsymbol{c}}(\boldsymbol{E}\boldsymbol{\varepsilon}_{m})$$

$\frac{\sigma_{w}}{c} = \frac{y}{c}$ Neutral surface σ_{x}

Therefore,

$$=-\frac{y}{c}\sigma_{m}=-\frac{y}{c}\sigma_{\max}$$

(4.12)

Based on Eq. (4.1)

$$\int \sigma_x dA = 0 \qquad (4.1)$$

$$\sigma_x = -\frac{y}{c} \sigma_m = -\frac{y}{c} \sigma_{max} \qquad (4.12)$$

$$\int \sigma_x dA = \int (-\frac{y}{c} \sigma_m) dA = -\frac{\sigma_m}{c} \int y dA = 0$$

Hence,

 $\int y dA = first moment of area = 0$

(4.13)

Therefore,

Within elastic range, the neutral axis passes through the centroid of the section.

According to Eq. (4.3)
$$\sigma_x = -\frac{y}{c}\sigma_m$$
 (4.3)
and $\int (-y\sigma_x dA) = M$ (4.12)
It follows $\int (-y)(-\frac{y}{c}\sigma_m) dA = M$

or
$$\frac{O_m}{c} \int y^2 dA = M$$
 (4.14)

Since $I = \int y^2 dA$

Eq. (4.24)

$$\frac{\sigma_m}{c} \int y^2 dA = M$$

can be written as

Elastic Flexure Formula

(4.15)

At any distance y from the neutral axis:

$$\sigma_x = -\frac{My}{I}$$

 $\sigma_m = \frac{Mc}{r}$

Flexural Stress

(4.16)

If we define

Elastic section modulus =
$$S = \frac{1}{2}$$
 (4.17)

Eq. (4.15) can be expressed as

$$\sigma_m = \frac{M}{S}$$

(4.18)

 $\frac{1}{bh^3}$ $=\frac{1}{6}bh^2=\frac{1}{6}Ah$ <u> 12</u> S $\frac{h}{2}$ С

Deformation in a Transverse Cross Section

Assumption in Pure Bending of a Beam:

The transverse cross section of a beam remains "plane".

However, this plane may undergo *in-plane* deformations.

A. Material above the neutral surface (y>0),

$$\sigma_x = \Theta \varepsilon_x = \Theta$$

(4.22)

neutral

axis

$$\varepsilon_{y} = -V\varepsilon_{x} \qquad \varepsilon_{z} = -V\varepsilon_{x}$$

Since $\varepsilon_{x} = -\frac{y}{\rho}$ (4.8)
Hence, $\varepsilon_{y} = \frac{Vy}{\rho} \qquad \varepsilon_{z} = \frac{Vy}{\rho}$
Therefore, $\varepsilon_{y} = \Phi, \varepsilon_{z} = \Phi$

Material below the neutral surface (y<0),
$$\sigma_x = \bigoplus, \varepsilon_x = \bigoplus$$

 $\Longrightarrow, \varepsilon_y = \bigoplus, \varepsilon_z = \bigoplus$
As a consequence,
Analogous to Eq. (4.8)
 $\varepsilon_x = -\frac{y}{\rho} \rightarrow \rho = -\frac{y}{\varepsilon_x}$

For the transverse plane:

$$\rho' = -\frac{y}{\varepsilon_y} = \frac{y}{\upsilon \varepsilon_x} = \frac{1}{\upsilon} \frac{y}{\varepsilon_x} = \frac{\rho}{\upsilon}$$

 ρ = radius of curvature,

$1/\rho$ = curvature

Anticlastic curvature $=\frac{1}{\rho} = \frac{\nu}{\rho}$ (4.23)

Bending of Members Made of Several Materials

(Composite Beams)

From Eq. (4.8) \mathcal{E}_x

For Material 1:

For Material 2:

 $E_1 y$ $\sigma_1 = E_1 \varepsilon_x =$ $\sigma_2 = E_2 \varepsilon_x =$ ρ

$$dF_1 = \sigma_1 dA = -\frac{E_1 y}{\rho} dA$$
$$dF_2 = \sigma_2 dA = -\frac{E_2 y}{\rho} dA$$

Designating $E_2 = nE_1$

$$dF_2 = -\frac{(nE_1)y}{\rho}dA = -\frac{E_1y}{\rho}(ndA)$$

Notes:

1. The neutral axis is calculated based on the transformed section.

My

 \mathcal{O}

2. $\sigma_2 = n\sigma_x$

3. I = the moment of inertia of the transformed section 4. Deformation -- $\frac{1}{\rho} = \frac{M}{E_1 I}$

Beam with Reinforced Members:

 $A_s =$ area of steel, $A_c =$ area of concrete $E_s =$ modulus of steel, $E_c =$ modulus of concrete $n = E_s/E_c$

Beam with Reinforced Members:

 $A_s = area of steel,$ $A_c = area of concrete$ $E_s = modulus of steel,$ $E_c = modulus of concrete$ $n = E_s/E_c$

$$(bx)\frac{x}{2} - nA_s(d-x) = 0$$

 $\frac{1}{2}bx^2 + nA_sx - nA_sd = 0$

 \rightarrow determine the N.A.

Stress Concentrations

 $\sigma_m = K \frac{Mc}{I}$

Eccentric Axial Loading in a Plane of Symmetry

 $\sigma_x = (\sigma_x)_{centric} + (\sigma_x)_{bending}$

 $\sigma_x = \frac{P}{A} - \frac{My}{I}$

Unsymmetric Bending

-- Two planes of symmetry

y – axis & z-axis

 Single plane of symmetry – y-axis
 M coincides with the N.A.

For an arbitrary geometry + M applies along the N.A

 $\Sigma F_{x} = 0 \qquad \int \sigma_{x} dA = 0 \qquad \text{(the Centroid = the N.A.)} \qquad (4.1)$ $\Sigma M_{y} = 0 \qquad \int z \sigma_{x} dA = 0 \qquad \text{(moment equilibrium)} \qquad (4.2)$ $\Sigma M_{z} = 0 \qquad \int -(y \sigma_{x} dA) = M \qquad \text{(moment equilibrium)} \qquad (4.3)$ Substituting $\sigma_{x} = -\frac{\sigma_{m} y}{c} \quad \text{into Eq. (4.2)}$

- Plane of symmetry

We have
$$\int z(-\frac{\sigma_m y}{c}) dA = 0 \quad or \quad -\frac{\sigma_m}{c} \int z(y) dA = 0$$

or
$$\int yz dA = I_{yz} = 0 \qquad \text{(knowing } \sigma_m/c = \text{constant)}$$

 $I_{yz} = 0$ indicates that y- and z-axes are the principal centroid of the cross section.

Hence, the N.A. coincides with the M-axis.

If the axis of M coincides with the principal centroid axis, the superposition method can be used.

Case A

$$M_z = M\cos\theta$$
 $M_y = M\sin\theta$

For Case A

For Case B

$$\sigma_x = -\frac{M_z y}{I_z} \qquad (4.53)$$

$$\sigma_x = +\frac{M_y^2 z}{I_z} \qquad (4.54)$$

For the combined cases :

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} \qquad (4.55)$$

Case B

The N.A. is the surface where $\sigma_x = 0$. By setting $\sigma x = 0$ in Eq. (4.55), one has

$$-\frac{M_z y}{I_z} + \frac{M_y z}{I_y} = 0$$

Solving for y and substituting for M_z and M_y from Eq. (4.52),

$$y = (\frac{I_z}{I_y} \tan \theta)z$$
(4.50)
This is equivalent to $y/z = m = slope = \left(\frac{I_z}{I_y}\right) \tan \theta$

The N.A. is an angle ϕ from the z-axis:

$$\tan \phi = \frac{I_z}{I_y} \tan \theta \qquad (4.57)$$

General Case of Eccentric Axial loading

Bending of Curved Members

If we define $\theta' - \theta = \Delta \theta$ and knowing R $\theta = R' \theta'$, thus

 $\delta = -y\Delta\theta$

Based on the definition of strain, we have

 $\varepsilon_x = \frac{\delta}{r\theta} = -\frac{y\Delta\theta}{r\theta}$

Substituting r = R - y into the above equation,

$$\varepsilon_x = -\frac{\Delta\theta}{\theta} \frac{y}{R-y}$$

Also, $\sigma_x = \mathbf{E} \, \boldsymbol{\varepsilon}_x$

$$\sigma_x = -\frac{E\Delta\theta}{\theta}\frac{y}{R-y}$$

(4.62)

(4.63)

(4.65)

(4.64)

Plotting
$$\sigma_x = -\frac{E\Delta\theta}{\theta}\frac{y}{R-y}$$

 $\Rightarrow \sigma_x$ is not a linear function of y.

Since
$$r = R - y \rightarrow y = R - r$$
, therefore,

$$\sigma_x = -\frac{E\Delta\theta}{\theta} \frac{R-r}{r}$$

Substituting this eq. into Eq. (4.1) $\int \sigma_x dA = 0$

$$-\int \frac{E\Delta\theta}{\theta} \frac{R-r}{r} dA = 0 \quad \text{and} \quad -\frac{E\Delta\theta}{\theta} \int \frac{R-r}{r} dA = 0$$
$$\int \frac{R-r}{r} dA = 0 \quad \text{or} \quad R\int \frac{dA}{r} - \int dA = 0 \quad \left(\frac{E\Delta\theta}{\theta} = \cos t\right)$$

Therefore, R can be determined by the following equation:

 $R = \frac{1}{c d}$

Or in an alternative format:

$$\frac{1}{R} = \frac{1}{A} \int \frac{1}{r} dz$$

(4.66)

(4.67)

(4.59)

The centroid of the section is determined by

$$\bar{r} = \frac{1}{A} \int r dA$$

Comparing Eqs. (4.66) and (4.67), we conclude that:

The N.A. axis does not pass through the Centroid of the cross section.

$$\Sigma M_z = M \Rightarrow \int \frac{E\Delta\theta R - r}{\theta r} y dA = M$$

Since y = R - r, it follows

$$\frac{E\Delta\theta}{\theta}\int \frac{\left(R-r\right)^{2}}{r}dA = M$$
$$\frac{E\Delta\theta}{\theta}\left[R^{2}\int \frac{dA}{r} - 2RA + \int rdA\right] = M$$

or

Recalling Eqs. (4-66) and (4.67), we have

$$\frac{E\Delta\theta}{\theta}(RA - 2RA + \bar{r}A) = M$$

Finally,

$$\frac{E\Delta\theta}{\theta} = \frac{M}{A(\bar{r}-R)} \tag{4.68}$$

By defining $e = \overline{r} - R$, the above equation takes the new form $\frac{E\Delta\theta}{\theta} = \frac{M}{Ae}$ (4.69)

Substituting this expression into Eqs. (4.64) and (4-65), we have

$$\sigma_x = -\frac{My}{Ae(R-y)}$$
 and $\sigma_x = \frac{M(r-R)}{Aer}$ (4.70, 71)

Determination of the change in curvature:

From Eq. (4.59)

$$\frac{1}{R'} = \frac{1}{R}\frac{\theta}{\theta}$$

Since $\theta' = \theta + \Delta \theta$ and from Eq. (4.69), one has

$$\frac{1}{R'} = \frac{1}{R}\left(1 + \frac{\Delta\theta}{\theta}\right) = \frac{1}{R}\left(1 + \frac{M}{EAe}\right)$$

Hence, the change of curvature is

 $\frac{1}{R'} - \frac{1}{R} = \frac{M}{EAeR}$

 $\sigma_x = \frac{P}{A} - \frac{M_Z y}{I_z} + \frac{M_y z}{I_y}$

 $\sigma_x = (\sigma_x)_{centric} + (\sigma_x)_{bending}$

$$\sigma_x = \frac{P}{A} - \frac{My}{I}$$

 $\int z(-\frac{\sigma_m y}{c})dA = 0$ $\int yzdA = 0$

(4.58) (4.58) (4.58) (4.58)

$$(bx)\frac{x}{2} - nA_s(d-x) = 0$$
$$\frac{1}{2}bx^2 + nA_sx - nA_sd = 0$$

$$\sigma_m = K \frac{Mc}{I}$$

$$M = -b \int_{-c}^{c} y \sigma_{x} dy$$

$$M = -2b \int_0^c y \sigma_x dy$$

$$R_{B} = \frac{M_{U}c}{I}$$

$$R = \frac{A}{\int_{r_1}^{r_2} \frac{dA}{r}} = \frac{bh}{\int_{r_1}^{r_2} \frac{bdr}{r}} = \frac{h}{\int_{r_1}^{r_2} \frac{dr}{r}}$$

$$R = \frac{h}{\ln \frac{r_2}{r_1}}$$

 $Z = \frac{M_p}{\sigma_Y} = \frac{bc^2 \sigma_Y}{\sigma_Y} = bc^2 = \frac{1}{4}bh^2$

 $S = \frac{1}{6}bh^2$

$$k = \frac{Z}{S} = \frac{\frac{1}{4}bh^2}{\frac{1}{6}bh^2} = \frac{3}{2}$$
$$F = P$$
$$M - Pd$$

$$R_{Y} = \frac{1}{2}bc\sigma_{Y}$$

$$R_{p} = bc\sigma_{Y}$$

$$M_{Y} = (\frac{4}{3}c)R_{Y} = \frac{2}{3}bc^{2}\sigma$$

$$M_{p} = cR_{p} = bc^{2}\sigma_{Y}$$

$$M_{p} = kM_{Y}$$

$$M_{p} = Z\sigma_{Y}$$

$$k = \frac{M_p}{M_Y} = \frac{Z\sigma_Y}{S\sigma_Y} = \frac{Z}{S}$$

$$M_p = \frac{3}{2}M_y$$

$$y_{Y} = \varepsilon_{Y} \rho$$

$$c = \varepsilon_{Y} \rho_{Y}$$

$$\frac{y_Y}{f} = \frac{\rho}{f}$$

$$c \rho_{Y}$$

$$M = \frac{3}{2} M_Y \left(1 - \frac{1}{3} \frac{\rho^2}{\rho_Y^2}\right)$$

 $M_{Y} = \frac{1}{c}\sigma_{Y}$ $\frac{I}{c} = \frac{b(2c)^{3}}{12c} = \frac{2}{3}bc^{2}$

$$M_{Y} = \frac{2}{3}bc^{2}\sigma$$
$$\sigma_{x} = -\frac{\sigma_{Y}}{\gamma_{Y}}y$$

$$M = -2b \int_0^{y_Y} y(-\frac{\sigma_Y}{y_Y}y) dy - 2b \int_{y_Y}^c y(-\sigma_Y) dy$$
$$= \frac{2}{2} by_Y^2 \sigma_Y + bc^2 \sigma_Y - by_Y^2 \sigma_Y$$

