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Symmetric Member in Pure Bending 

M =  Bending Moment 

Sign Conventions for M: 

 --  concave upward 

⊝ -- concave downward 



Force Analysis – Equations of Equilibrium 

0xdA 

0xz dA 

( )xy dA M 

Fx = 0 

My-axis = 0 

Mz-axis = 0 

xz = xy =  0 
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(4.3) 



Deformation in a Symmetric Member in  Pure 

Bending 

Assumptions of Beam Theory: 

    1. Any cross section  to the beam axis remains plane 

    2. The plane of the section passes through the center of 

 curvature (Point C). 

Plane CAB is the Plane of                    

Symmetry 



The Assumptions Result in the Following Facts: 

         1. xy = xz =  0     xy = xz = 0 

         2. y = z =  yz = 0  

The only non-zero stress:      x  0     Uniaxial Stress 

The Neutral Axis (surface) :  x = 0  &  x = 0 
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Where  = radius of curvature 

  = the central angle 

Line JK           (4.5) 

Before deformation:  DE = JK 

Therefore,                 

Line DE        (4.4) 

(4.6) 
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The Longitudinal Strain  x =  
o
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x varies linearly with the distance y from the neutral surface 

(4.9) 

The max value of x occurs at the top or the bottom fiber: 
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Combining Eqs (4.8) & (4.9) yields 
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 Stresses and Deformation is in the Elastic Range 

For  elastic response – Hooke’s Law 
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Based on Eq. (4.1) 
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Hence, 

0ydA first moment of area 



Therefore, 

       Within elastic range, the neutral axis passes    

 through the centroid of the section. 

According to Eq. (4.3) 
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and (4.12) 

It follows 
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Eq. (4.24)  

can be written as 

Elastic Flexure Formula      (4.15) 

At any distance y from the neutral axis: 
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 Flexural Stress        (4.16) 



If we define 

Eq. (4.15) can be expressed as 

I
Elastic section modulus = S = 
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Solving Eq. (4.9) m
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Finally, we have 

(4.21) 
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 Deformation in a Transverse Cross Section 

Assumption in Pure Bending of a Beam: 

 The transverse cross section of a beam remains “plane”. 

However, this plane may undergo in-plane deformations. 

A. Material above the neutral surface (y>0),  ,ⓛ ⓛx x  

 y x   z x 
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 Since (4.8) 
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y




z
y




(4.22) 

Therefore,                       ,y z    



 Material below the neutral surface (y<0),  ,x x    

,ⓛ ⓛy z  
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As a consequence, 

Analogous to Eq. (4.8) 

For the transverse plane: 
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  =    radius of curvature,  

1/ =  curvature 

(4.23) 
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Bending of Members Made of Several Materials 
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From Eq. (4.8) 

For Material 1: 

For Material 2: 
2

2 2  x
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(Composite Beams) 
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Designating E2 =  nE1 
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2 xn 

Notes: 

    1. The neutral axis is calculated based on the transformed section. 

    2. 

    3. I = the moment of inertia of the transformed section 

    4. Deformation --   
1

1 M

E I




Beam with Reinforced Members: 

As =  area of steel,           Ac = area of concrete 

Es = modulus of steel,     Ec = modulus of concrete 

n= Es/Ec 



Beam with Reinforced Members: 

As =  area of steel,           Ac = area of concrete 

Es = modulus of steel,     Ec = modulus of concrete 

n= Es/Ec 
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Stress Concentrations 
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  Eccentric Axial Loading in a Plane of Symmetry 



( ) ( ) x x centric x bending  

 x

P My

A I




Unsymmetric Bending 

-- Two planes of symmetry 

 y – axis & z-axis 

-- Single plane of symmetry – 

 y-axis 

--M coincides with the N.A. 



For an arbitrary geometry + M applies along the N.A 

Fx  = 0 0xdA 

0xz dA 
( )xy dA M 

My  = 0 

Mz  = 0 

(4.1) 

(4.2) 

(4.3) 

Substituting  m
x

y

c


   into Eq. (4.2)  

(the Centroid =  the N.A.)  

(moment equilibrium)  

(moment equilibrium)  



Plane of symmetry 



0 0( ) ( )m my
z dA or z y dA
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0yzyzdA I 

We have 

or 

Iyz = 0 indicates that y- and z-axes are the principal 

centroid of the cross section.   

Hence, the N.A. coincides with the M-axis. 

(knowing m/c = constant) 

If the axis of M coincides with the principal centroid axis, the  

superposition method can be used. 
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Case A 

Case B 

For Case A 

For Case B 

For  the combined cases : yz
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The N.A. is the surface where x = 0.  By setting x = 0 in Eq. (4.55), one has 

Solving for y and substituting for Mz and My from Eq. (4.52), 

(4.56) 
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The N.A. is an angle  from the z-axis: 

(4.57) 



  General Case of Eccentric Axial loading 
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 Bending of Curved Members 

Before bending After bending 

Length of N.A. before and after bending 

The elongation of JK line 

' ' r R ySince 

(4.59) 

(4.60) 

(4.61) 

We have 
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If we define  -  =  and knowing R  = R ,  thus 
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(4.64) 

Based on the definition of strain, we have 

 r R y

(4.63) 

Also, x = E x 

(4.62) 

(4.65) 

Substituting  into the above equation, 
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Plotting  

   x is not a linear function of y. 

Since 

Substituting this eq. into Eq. (4.1) 

   y = R – r,  therefore, 
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Therefore, R can be determined by the following equation: 
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 Or in an alternative format: 

(4.67) 

The centroid of the section is determined by 

(4.59) 

(4.66) 

Comparing Eqs. (4.66) and (4.67), we conclude that: 

 The N.A. axis does not pass through the Centroid of 

 the cross section. 
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Since 

Recalling Eqs. (4-66) and (4.67), we have 

or 

, it follows 

Finally, 
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By defining                    , the above equation takes the new form e r R 
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(4.69) 

Substituting this expression into Eqs. (4.64) and (4-65), we have 
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and (4.70, 71) 

Determination of the change in curvature: 

From Eq. (4.59) 

Since and from Eq. (4.69), one has 
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Hence, the change of curvature is 
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( ) ( ) x x centric x bending  
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