Pure Bending

- Axial
- Torsion
- Bending

Introduction

Eccentric Loading

Pure Bending

Symmetric Member in Pure Bending

$$
\mathbf{M}=\text { Bending Moment }
$$

Sign Conventions for M:

\oplus-- concave upward
Θ-- concave downward

Force Analysis - Equations of Equilibrium

Deformation in a Symmetric Member in Pure Bending

Plane CAB is the Plane of Symmetry

Assumptions of Beam Theory:

1. Any cross section \perp to the beam axis remains plane
2. The plane of the section passes through the center of curvature (Point C).

The Assumptions Result in the Following Facts:

$$
\begin{aligned}
& \text { 1. } \tau_{\mathrm{xy}}=\tau_{\mathrm{xz}}=0 \rightarrow \gamma_{\mathrm{xy}}=\gamma_{\mathrm{xz}}=0 \\
& \text { 2. } \sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\tau_{\mathrm{yz}}=0
\end{aligned}
$$

The only non-zero stress: $\quad \sigma_{\mathrm{x}} \neq 0 \rightarrow$ Uniaxial Stress

The Neutral Axis (surface) : $\sigma_{x}=0 \& \varepsilon_{x}=0$

$$
\begin{equation*}
L=\rho \theta \quad \text { Line } \mathrm{DE} \tag{4.4}
\end{equation*}
$$

Where $\rho=$ radius of curvature

$$
\theta=\text { the central angle }
$$

$$
\begin{equation*}
L^{\prime}=(\rho-y) \theta \quad \text { Line } \mathrm{JK} \tag{4.5}
\end{equation*}
$$

Before deformation: DE = JK
Therefore,$\quad \delta=L^{\prime}-L$
$\delta=(\rho-y) \theta-\rho \theta=-y \theta$

ε_{x} varies linearly with the distance y from the neutral surface

The max value of ε_{x} occurs at the top or the bottom fiber:

$$
\begin{equation*}
\varepsilon_{m}=\frac{c}{\rho} \tag{4.9}
\end{equation*}
$$

Combining Eqs (4.8) \& (4.9) yields

$$
\varepsilon_{x}=-\frac{y}{c} \varepsilon_{m}
$$

Stresses and Deformation is in the Elastic Range

For elastic response - Hooke's Law

$$
\begin{align*}
& \sigma_{x}=E \varepsilon_{x} \tag{4.11}\\
& \varepsilon_{x}=-\frac{y}{c} \varepsilon_{m} \tag{4.10}\\
& E \varepsilon_{x}=-\frac{y}{c}\left(E \varepsilon_{m}\right)
\end{align*}
$$

Based on Eq. (4.1)

$$
\begin{aligned}
& \int \sigma_{x} d A=0 \\
& \sigma_{x}=-\frac{y}{c} \sigma_{m}=-\frac{y}{c} \sigma_{\max } \\
& \int \sigma_{x} d A=\int\left(-\frac{y}{c} \sigma_{m}\right) d A=-\frac{\sigma_{m}}{c} \int y d A=0
\end{aligned}
$$

Hence,

$$
\int y d A=\text { first moment of area }=0
$$

(4.13)

Therefore,

Within elastic range, the neutral axis passes through the centroid of the section.

According to Eq. (4.3) $\quad \sigma_{x}=-\frac{y}{c} \sigma_{m}$

$$
\begin{equation*}
\int\left(-y \sigma_{x} d A\right)=M \tag{4.3}
\end{equation*}
$$

It follows $\quad \int(-y)\left(-\frac{y}{c} \sigma_{m}\right) d A=M$

$$
\begin{equation*}
\text { or } \quad \frac{\sigma_{m}}{c} \int y^{2} d A=M \tag{4.14}
\end{equation*}
$$

Since $\quad I=\int y^{2} d A$
Eq. (4.24) $\quad \frac{\sigma_{m}}{c} \int y^{2} d A=M$
can be written as

Elastic Flexure Formula
(4.15)

At any distance y from the neutral axis:

$$
\sigma_{x}=-\frac{M y}{I} \quad \text { Flexural Stress }
$$

(4.16)

If we define

$$
\begin{equation*}
\text { Elastic section modulus }=\mathrm{S}=\frac{\mathrm{I}}{\mathrm{c}} \tag{4.17}
\end{equation*}
$$

Eq. (4.15) can be expressed as

$$
\sigma_{m}=\frac{M}{S}
$$

(4.18)

Solving Eq. (4.9)

$$
\begin{align*}
& \varepsilon_{m}=\frac{c}{\rho} \tag{4.9}\\
& \frac{1}{\rho}=\frac{\sigma_{m}}{E c}=\frac{1}{E c} \frac{M c}{I}
\end{align*}
$$

Finally, we have

$$
S=\frac{I}{c}=\frac{\frac{1}{12} b h^{3}}{\frac{h}{2}}=\frac{1}{6} b h^{2}=\frac{1}{6} \mathrm{Ah}
$$

Deformation in a Transverse Cross Section

Assumption in Pure Bending of a Beam:
The transverse cross section of a beam remains "plane".

However, this plane may undergo in-plane deformations.
A. Material above the neutral surface ($\mathrm{y}>0$),

$$
\sigma_{x}=\Theta \varepsilon_{x}=\epsilon
$$

Since $\quad \varepsilon_{x}=-\frac{y}{\rho}$
Hence, $\quad \varepsilon_{y}=\frac{v y}{\rho} \quad \varepsilon_{z}=\frac{v y}{\rho}$
Therefore,

$$
\varepsilon_{y}=\oplus, \varepsilon_{z}=\oplus
$$

Material below the neutral surface ($\mathrm{y}<0$),

$$
\sigma_{x}=\oplus, \varepsilon_{x}=\oplus
$$

As a consequence,

Analogous to Eq. (4.8)

$$
\varepsilon_{x}=-\frac{y}{\rho} \rightarrow \rho=-\frac{y}{\varepsilon_{x}}
$$

For the transverse plane:

$$
\rho^{\prime}=-\frac{y}{\varepsilon_{y}}=\frac{y}{v \varepsilon_{x}}=\frac{1}{v \varepsilon_{x}} \frac{y}{\varepsilon_{x}}=\frac{\rho}{v}
$$

$\rho=$ radius of curvature,
$1 / \rho=$ curvature
Anticlastic curvature $=\frac{1}{\rho^{\prime}}=\frac{v}{\rho}$
(4.23)

Bending of Members Made of Several Materials

(Composite Beams)

From Eq. (4.8) $\quad \varepsilon_{x}=-\frac{y}{\rho}$
For Material 1: $\quad \sigma_{1}=E_{1} \varepsilon_{x}=-\frac{E_{1} y}{\rho}$
For Material 2:

$$
\sigma_{2}=E_{2} \varepsilon_{x}=-\frac{E_{2} X}{\rho}
$$

$$
\begin{aligned}
& d F_{1}=\sigma_{1} d A=-\frac{E_{1} y}{\rho} d A \\
& d F_{2}=\sigma_{2} d A=-\frac{E_{2} y}{\rho} d A
\end{aligned}
$$

Designating $\mathrm{E}_{\mathbf{2}}=\mathbf{n E} \mathrm{E}_{1}$

$$
d F_{2}=-\frac{\left(n E_{1}\right) y}{\rho} d A=-\frac{E_{1} y}{\rho}(n d A)
$$

Fig. 4.25 Transformed section for composite bar.

$$
\sigma_{x}=-\frac{M y}{I}
$$

Notes:

1. The neutral axis is calculated based on the transformed section.
2. $\boldsymbol{\sigma}_{2}=\boldsymbol{n} \boldsymbol{\sigma}_{\boldsymbol{x}}$
3. $\mathrm{I}=$ the moment of inertia of the transformed section
4. Deformation -- $\frac{1}{\rho}=\frac{M}{E_{1} I}$

Beam with Reinforced Members:

$$
\begin{array}{ll}
\mathbf{A}_{\mathrm{s}}=\text { area of steel }, & \mathbf{A}_{\mathrm{c}}=\text { area of concrete } \\
\mathbf{E}_{\mathrm{s}}=\text { modulus of steel }, & \mathbf{E}_{\mathrm{c}}=\text { modulus of concrete } \\
\mathbf{n}=\mathbf{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}} &
\end{array}
$$

Beam with Reinforced Members:

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{A}_{s}=\text { area of steel, } \\
\mathbf{E}_{\mathbf{s}}=\text { modulus of steel, }, \\
\mathbf{n}=\mathbf{E}_{s} / \mathbf{E}_{\mathbf{c}} \\
\mathbf{E}_{\mathbf{c}}
\end{array}=\text { modulus of concrete } \\
& (b x) \frac{x}{2}-n A_{s}(d-x)=0 \\
& \frac{1}{2} b x^{2}+n A_{s} x-n A_{s} d=0 \quad \rightarrow \text { determine the N.A. }
\end{aligned}
$$

Stress Concentrations

$$
\sigma_{m}=K \frac{M c}{I}
$$

Eccentric Axial Loading in a Plane of Symmetry

Fig. 4.48

$$
\sigma_{x}=\left(\sigma_{x}\right)_{\text {centric }}+\left(\sigma_{x}\right)_{\text {bending }}
$$

$$
\sigma_{x}=\frac{P}{A}-\frac{M y}{I}
$$

Unsymmetric Bending

-- Two planes of symmetry

$$
y-\text { axis \& } z \text {-axis }
$$

-- Single plane of symmetry y -axis
--M coincides with the N.A.

For an arbitrary geometry + M applies along the N.A

$$
\begin{array}{lll}
\Sigma \mathbf{F}_{\mathbf{x}}=\mathbf{0} & \int \sigma_{x} d A=0 & \text { (the Centroid }=\text { the } \\
\Sigma \mathbf{M}_{\mathbf{y}}=\mathbf{0} & \int z \sigma_{x} d A=0 & \text { (moment equilibrium) } \\
\boldsymbol{\Sigma} \mathbf{M}_{\mathbf{z}}=\mathbf{0} & \int-\left(y \sigma_{x} d A\right)=M & \text { (moment equilibrium) } \tag{4.3}
\end{array}
$$

Substituting $\sigma_{x}=-\frac{\sigma_{m} y}{c}$ into Eq. (4.2)

We have

$$
\int z\left(-\frac{\sigma_{m} y}{c}\right) d A=0 \quad \text { or }-\frac{\sigma_{m}}{c} \int z(y) d A=0
$$

or

$$
\int y z d A=I_{y z}=0 \quad \text { (knowing } \sigma_{\mathrm{m}} / \mathrm{c}=\text { constant) }
$$

$\mathrm{I}_{\mathrm{yz}}=0$ indicates that y - and z -axes are the principal centroid of the cross section.

Hence, the N.A. coincides with the M-axis.

If the axis of M coincides with the principal centroid axis, the superposition method can be used.

Case A

$$
M_{z}=M \cos \theta \quad M_{y}=M \sin \theta
$$

$\begin{array}{lr}\text { For Case A } & \sigma_{x}=-\frac{M_{z} y}{I_{z}} \\ \text { For Case B } & \sigma_{x}=+\frac{M_{y}}{I_{y}}\end{array}$
For the combined cases : $\quad \sigma_{x}=-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}}$

The N.A. is the surface where $\sigma_{x}=0$. By setting $\sigma x=0$ in Eq. (4.55), one has

$$
-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}}=0
$$

Solving for y and substituting for M_{z} and M_{y} from Eq. (4.52),

$$
\begin{equation*}
y=\left(\frac{I_{z}}{I_{y}} \tan \theta\right) z \tag{4.56}
\end{equation*}
$$

This is equivalent to $y / z=m=$ slope $=\left(\frac{I_{z}}{I_{y}}\right) \tan \theta$
The N.A. is an angle ϕ from the z -axis:

$$
\begin{equation*}
\tan \phi=\frac{I_{z}}{I_{y}} \tan \theta \tag{4.57}
\end{equation*}
$$

General Case of Eccentric Axial loading

$$
\begin{align*}
& \sigma_{x}=\frac{P}{A}-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}} \tag{4.58}\\
& \frac{M_{z}}{I_{z}} y-\frac{M_{y}}{I_{y}} z=\frac{P}{A}
\end{align*}
$$

(4.58)

Bending of Curved Members

Before bending

After bending

Length of N.A. before and after bending

$$
\begin{align*}
& R \theta=R^{\prime} \theta^{\prime} \tag{4.59}\\
& \delta=r^{\prime} \theta^{\prime}-r \theta \tag{4.60}
\end{align*}
$$

Since

$$
\begin{equation*}
r=R-y \tag{4.61}
\end{equation*}
$$

$$
r^{\prime}=R^{\prime}-y
$$

We have

$$
\delta=\left(R^{\prime}-y\right) \theta^{\prime}-(R-y) \theta
$$

If we define $\theta^{\prime}-\theta=\Delta \theta$ and knowing $\mathrm{R} \theta=\mathrm{R}^{\prime} \theta^{\prime}$, thus

$$
\begin{equation*}
\delta=-y \Delta \theta \tag{4.62}
\end{equation*}
$$

Based on the definition of strain, we have

$$
\begin{equation*}
\varepsilon_{x}=\frac{\delta}{r \theta}=-\frac{y \Delta \theta}{r \theta} \tag{4.63}
\end{equation*}
$$

Substituting $r=R-y$ into the above equation,

$$
\begin{equation*}
\varepsilon_{x}=-\frac{\Delta \theta}{\theta} \frac{y}{R-y} \tag{4.64}
\end{equation*}
$$

Also, $\sigma_{\mathrm{x}}=\mathrm{E} \varepsilon_{\mathrm{x}}$

$$
\begin{equation*}
\sigma_{x}=-\frac{E \Delta \theta}{\theta} \frac{y}{R-y} \tag{4.65}
\end{equation*}
$$

Plotting $\quad \sigma_{x}=-\frac{E \Delta \theta}{\theta} \frac{y}{R-y}$

$\Rightarrow \sigma_{x}$ is not a linear function of y.

Since $r=R-y \rightarrow \mathrm{y}=\mathrm{R}-\mathrm{r}$, therefore,

$$
\sigma_{x}=-\frac{E \Delta \theta}{\theta} \frac{R-r}{r}
$$

Substituting this eq. into Eq. (4.1) $\int \sigma_{x} d A=0$

$$
\begin{gathered}
-\int \frac{E \Delta \theta}{\theta} \frac{R-r}{r} d A=0 \quad \text { and } \quad-\frac{E \Delta \theta}{\theta} \int \frac{R-r}{r} d A=0 \\
\int \frac{R-r}{r} d A=0 \quad \text { or } \quad R \int \frac{d A}{r}-\int d A=0 \quad\left(\frac{E \Delta \theta}{\theta}=\cos t .\right)
\end{gathered}
$$

Therefore, R can be determined by the following equation:

Or in an alternative format: $\frac{1}{R}=\frac{1}{A} \int \frac{1}{r} d A$
The centroid of the section is determined by

$$
\begin{equation*}
\bar{r}=\frac{1}{A} \int r d A \tag{4.59}
\end{equation*}
$$

Comparing Eqs. (4.66) and (4.67), we conclude that:
The N.A. axis does not pass through the Centroid of the cross section.

$\Sigma \mathbf{M}_{\mathbf{z}}=\mathbf{M} \Rightarrow$
 $\int \frac{E \Delta \theta R-r}{\theta} y d A=M$

Since $y=R-r$, it follows

$$
\frac{E \Delta \theta}{\theta} \int \frac{(R-r)^{2}}{r} d A=M
$$

or

$$
\frac{E \Delta \theta}{\theta}\left[R^{2} \int \frac{d A}{r}-2 R A+\int r d A\right]=M
$$

Recalling Eqs. (4-66) and (4.67), we have

$$
\frac{E \Delta \theta}{\theta}(R A-2 R A+\bar{r} A)=M
$$

Finally,

$$
\begin{equation*}
\frac{E \Delta \theta}{\theta}=\frac{M}{A(\bar{r}-R)} \tag{4.68}
\end{equation*}
$$

By defining $e=\bar{r}-R$, the above equation takes the new form

$$
\begin{equation*}
\frac{E \Delta \theta}{\theta}=\frac{M}{A e} \tag{4.69}
\end{equation*}
$$

Substituting this expression into Eqs. (4.64) and (4-65), we have

$$
\begin{equation*}
\sigma_{x}=-\frac{M y}{A e(R-y)} \quad \text { and } \quad \sigma_{x}=\frac{M(r-R)}{A e r} \tag{4.70,71}
\end{equation*}
$$

Determination of the change in curvature:
From Eq. (4.59) $\quad \frac{1}{R^{\prime}}=\frac{1}{R} \frac{\theta^{\prime}}{\theta}$
Since $\theta^{\prime}=\theta+\Delta \theta$ and from Eq. (4.69), one has

$$
\frac{1}{R^{\prime}}=\frac{1}{R}\left(1+\frac{\Delta \theta}{\theta}\right)=\frac{1}{R}\left(1+\frac{M}{E A e}\right)
$$

Hence, the change of curvature is

$$
\frac{1}{R^{\prime}}-\frac{1}{R}=\frac{M}{E A e R}
$$

$$
\sigma_{x}=-\frac{E \Delta \theta}{\theta} \frac{R-r}{r}
$$

$$
\sigma_{x}=\frac{P}{A}-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}}
$$

$$
\begin{gathered}
\sigma_{x}=\left(\sigma_{x}\right)_{\text {centric }}+\left(\sigma_{x}\right)_{\text {bending }} \\
\sigma_{x}=\frac{P}{A}-\frac{M y}{I} \\
\int z\left(-\frac{\sigma_{m} y}{c}\right) d A=0 \\
\int y z d A=0
\end{gathered}
$$

$$
\begin{aligned}
& (b x) \frac{x}{2}-n A_{s}(d-x)=0 \\
& \frac{1}{2} b x^{2}+n A_{s} x-n A_{s} d=0 \\
& \sigma_{m}=K \frac{M c}{I} \\
& M=-b \int_{-c}^{c} y \sigma_{x} d y \\
& M=-2 b \int_{0}^{c} y \sigma_{x} d y \\
& R_{B}=\frac{M_{U} c}{I}
\end{aligned}
$$

$$
\begin{gathered}
R=\frac{A}{\int_{r_{1}}^{r_{2}} \frac{d A}{r}}=\frac{b h}{\int_{r_{1}}^{r_{2}} \frac{b d r}{r}}=\frac{h}{\int_{r_{1}}^{r_{2}} \frac{d r}{r}} \\
R=\frac{h}{\ln \frac{r_{2}}{r_{1}}}
\end{gathered}
$$

$$
\begin{aligned}
& Z=\frac{M_{p}}{\sigma_{Y}}=\frac{b c^{2} \sigma_{Y}}{\sigma_{Y}}=b c^{2}=\frac{1}{4} b h^{2} \\
& S=\frac{1}{6} b h^{2} \\
& k=\frac{Z}{S}=\frac{\frac{1}{4} b h^{2}}{\frac{1}{6} b h^{2}}=\frac{3}{2} \\
& F=P \\
& M=P d
\end{aligned}
$$

$$
\begin{gathered}
R_{Y}=\frac{1}{2} b c \sigma_{Y} \\
R_{p}=b c \sigma_{Y} \\
M_{Y}=\left(\frac{4}{3} c\right) R_{Y}=\frac{2}{3} b c^{2} \sigma_{Y} \\
M_{p}=c R_{p}=b c^{2} \sigma_{Y} \\
M_{p}=k M_{Y} \\
M_{p}=Z \sigma_{Y} \\
k=\frac{M_{p}}{M_{Y}}=\frac{Z \sigma_{Y}}{S \sigma_{Y}}=\frac{Z}{S}
\end{gathered}
$$

$$
\begin{aligned}
M & =b c^{2} \sigma_{Y}\left(1-\frac{1}{3} \frac{y_{Y}^{2}}{c^{2}}\right) \\
M & =\frac{3}{2} M_{Y}\left(1-\frac{1}{3} \frac{y_{Y}^{2}}{c^{2}}\right) \\
M_{p} & =\frac{3}{2} M_{Y} \\
y_{Y} & =\varepsilon_{Y} \rho \\
c & =\varepsilon_{Y} \rho_{Y} \\
\frac{y_{Y}}{c} & =\frac{\rho}{\rho_{Y}} \\
M & =\frac{3}{2} M_{Y}\left(1-\frac{1}{3} \frac{\rho^{2}}{\rho_{Y}^{2}}\right)
\end{aligned}
$$

$$
\begin{gathered}
M_{Y}=\frac{1}{c} \sigma_{Y} \\
\frac{I}{c}=\frac{b(2 c)^{3}}{12 c}=\frac{2}{3} b c^{2} \\
M_{Y}=\frac{2}{3} b c^{2} \sigma_{Y} \\
\sigma_{x}=-\frac{\sigma_{Y}}{y_{Y}} y \\
M=-2 b \int_{0}^{y_{Y}} y\left(-\frac{\sigma_{Y}}{y_{Y}} y\right) d y-2 b \int_{y_{Y}}^{c} y\left(-\sigma_{Y}\right) d y \\
=\frac{2}{3} b y_{Y}^{2} \sigma_{Y}+b c^{2} \sigma_{Y}-b y_{Y}^{2} \sigma_{Y}
\end{gathered}
$$

$$
\tan \phi=\frac{I_{z}}{I_{y}} \tan \theta
$$

(4.58)

$$
\frac{M_{z}}{I_{z}} y-\frac{M_{y}}{I_{y}} z=\frac{P}{A}
$$

(4.58)
(4.58)

