Addition of velocities

In relativistic physics, a velocity-addition formula is an equation that relates the velocities of objects in different reference frames. It is 3 -dimensional in nature. It also relates different frames, that is, the formulas applies to successive Lorentz transformation.
Accompanying velocity addition is a kinematic effect called the Thomas precession. Successive non-collinear Lorentz boosts affects a rotation to the coordinate system

No two objects can have a relative velocity greater than c! But what if I observe a spacecraft traveling at 0.8c and it fires a projectile which it observes to be moving at 0.7 c with respect to it!? Velocities must transform according to the Lorentz transformation, and that leads to a very non-intuitive result called Einstein velocity addition.

Just taking the differentials of these quantities leads to the velocity transformation. Taking the differentials of the Lorentz transformation expressions for x^{\prime} and t ' above gives

$$
\frac{d x^{\prime}}{d t^{\prime}}=\frac{\gamma(d x-v d t)}{\gamma\left(d t-\frac{v d x}{c^{2}}\right)}=\frac{\frac{d x}{d t}-v}{1-\frac{v \frac{d x}{d t}}{c^{2}}}
$$

Putting this in the notation introduced in the illustration above:

$$
u^{\prime}=\frac{u-v}{1-\frac{u v}{c^{2}}}
$$

The reverse transformation is obtained by just solving for u in the above expression. Doing that gives

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

The formulas for boosts in the standard configuration follow most straight forwardly from taking differentials of the inverse Lorentz boost in standard configuration,

$$
d x=\gamma\left(d x^{\prime}+v d t^{\prime}\right), \quad d y=d y^{\prime}, \quad d z=d z^{\prime}, \quad d t=\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)
$$

Divide the first three equations by the fourth,

$$
\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)}, \quad \frac{d y}{d t}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)}, \quad \frac{d z}{d t}=\frac{d z^{\prime}}{\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)},
$$

or

$$
\frac{d x}{d t}=\frac{d x^{\prime}+v d t^{\prime}}{d t^{\prime}\left(1+\frac{V}{c^{2}} \frac{d d^{\prime}}{d t^{\prime}}\right)}, \quad \frac{d y}{d t}=\frac{d y^{\prime}}{\gamma d t^{\prime}\left(1+\frac{V}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}\right)}, \quad \frac{d z}{d t}=\frac{d z^{\prime}}{\gamma d t^{\prime}\left(1+\frac{V}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}\right)},
$$

which is

$$
v_{x}=\frac{v_{x}^{\prime}+V}{1+\frac{V}{c^{2}} v_{x}^{\prime}}, \quad v_{y}=\frac{\sqrt{1-\frac{V^{2}}{c^{2}}} v_{y}^{\prime}}{1+\frac{V}{c^{2}} v_{x}^{\prime}}, \quad v_{i}=\frac{\sqrt{1-\frac{V^{2}}{c^{2}}} v_{i}^{\prime}}{1+\frac{V}{c^{2}} v_{x}^{\prime}}
$$

