LORENTZ TRANSFORMATION

LORENTZ TRANSFORMATION

- Again consider the transformation problem.
- The required transformation consists of equations allowing us to calculate the primed set of numbers in terms of the unprimed set or vice versa.
- The Lorentz transforms replace the Galilean transforms of position and time.

$$
\left(x^{\prime}, y^{\prime}, z^{\prime} ; t^{\prime}\right)
$$

$$
(x, y, z ; t)
$$

LORENTZ TRANSFORMATION

- The Lorentz transformations will be proved at a later.
- Again consider the case,

LORENTZ TRANSFORMATION

- The Lorentz transformations for position and time are:

$$
\begin{aligned}
& x=\left(x^{\prime}+v t^{\prime}\right) \gamma \\
& t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right) \\
& y=y^{\prime} z=z^{\prime}
\end{aligned}
$$

LORENTZ TRANSFORMATION

- The inverse of these equations give:

$$
\begin{aligned}
& x^{\prime}=(x-v t) \gamma \\
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& y^{\prime}=y \quad z^{\prime}=z
\end{aligned}
$$

LORENTZ TRANSFORMATION

- The transformation equations are valid for all speeds < c.
- Consider a flash bulb attached to S^{\prime} that goes off,

LORENTZ TRANSFORMATION

- At the instance it goes off the two frames coincide. At some later time the wavefront is at some point P.

LORENTZ TRANSFORMATION

- r: distance to a point on the wavefront measured by an observer in S.
- r ': distance to a point on the wavefront measured by an observer in S^{\prime}
$y \mid y^{\prime}$
$t=t^{\prime}=0$
y

LORENTZ TRANSFORMATION

$\begin{array}{lll}\text { - } r=c t & \text {..(1) } & \text { Stationary Frame } \\ \text { - } r^{\prime}=c t^{\prime} & \text {..(2) } & \text { Moving Frame }\end{array}$

LORENTZ TRANSFORMATION

- For simplicity, the general problem is stated so that the motion of P is along the $x-x^{\prime}$ axis.

LORENTZ TRANSFORMATION

- Radius of a sphere is $r^{2}=x^{2}+y^{2}+z^{2}$ in the s frame and similarly $\left(r^{\prime}\right)^{2}=\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}$ in the S^{\prime} frame.

$$
\begin{align*}
& x^{2}+y^{2}+z^{2}=c^{2} t^{2} \tag{3}\\
& \left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=c^{2}\left(t^{\prime}\right)^{2} \tag{4}
\end{align*}
$$

LORENTZ TRANSFORMATION

- Substituting is $y=y^{\prime} ; z=z^{\prime}$ into the previous equations and subtracting we get that,

$$
\begin{align*}
& x^{2}-\left(x^{\prime}\right)^{2}=c^{2} t^{2}-c^{2}\left(t^{\prime}\right)^{2} \\
& x^{2}-c^{2} t^{2}=\left(x^{\prime}\right)^{2}-c^{2}\left(t^{\prime}\right)^{2}
\end{align*}
$$

LORENTZ TRANSFORMATION

- We know that in the stationary frame, the distance travelled is given by

$$
x=v t \quad . .(6)
$$

- In the stationary frame, the distance travelled is

$$
x^{\prime}=0 \quad . .(7)
$$

LORENTZ TRANSFORMATION

- We know that in the stationary frame, the distance travelled is given by

$$
x=v t \quad . .(6)
$$

- In the stationary frame, the distance travelled is
- Using equations 5,6,7 we can show that,

$$
\begin{equation*}
x^{\prime}=0 \tag{7}
\end{equation*}
$$

$$
x^{\prime}=(x-v t) \gamma \quad . .(8) \quad t^{\prime}=\left(t-\frac{v}{c^{2}} x\right) \gamma \quad . .(9)
$$

LORENTZ TRANSFORMATION

- Summary:

$$
\begin{aligned}
& x^{\prime}=(x-v t) \gamma \\
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& y^{\prime}=y \quad z^{\prime}=z
\end{aligned}
$$

LORENTZ TRANSFORMATION

- Summary:

$$
\begin{aligned}
& x^{\prime}=(x-v t) \gamma \\
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& y^{\prime}=y \quad z^{\prime}=z
\end{aligned}
$$

- The Lorentz transformations can be verified by substituting equations 8,9 into the RHS of equation 5.

LORENTZ TRANSFORMATION

- To produce the Lorentz transformations for primed frame to the unprimed frame we substitute v with v.

$$
\begin{aligned}
& x=\left(x^{\prime}+v t^{\prime}\right) \gamma \\
& t=\gamma\left(t^{\prime}+\frac{v x^{\prime}}{c^{2}}\right) \\
& y=y^{\prime} \quad z=z^{\prime}
\end{aligned}
$$

LORENTZ TRANSFORMATION

- For $v \ll c$, the Lorentz transformations reduce to the Galilean transformations. When $v \ll c ; v / c \ll 1$ and - $\frac{v^{2}}{c^{2}} \ll 1$

LORENTZ TRANSFORMATION

- Solution:
- The question requires us to transform from the unprimed to the primed! Therefore use,

$$
\begin{aligned}
& x^{\prime}=(x-v t) \gamma \\
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& y^{\prime}=y \quad z^{\prime}=z
\end{aligned}
$$

