

Davisson-Germer experiment

de Broglie hypothesis

Photons:

$$E_{ph} = h \nu \qquad p = \hbar k = h/\lambda$$

Wave → Particle

What about the opposite?

Particle
$$\rightarrow$$
 Wave ?

$$\lambda = h/p$$

de Broglie hypothesis

Matter waves:

$$\lambda_{B} = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2mK}}$$

Wavelength for a walking man? Wavelength for a moving electron?

What is the wavelengths difference for 5 eV electron and 5 eV photon?

How to reveal the wave properties of electrons?

X-rays diffraction:

X-rays are electromagnetic waves with $\lambda = 10^{-8}$ to 10^{-12} m = 10 - 0.001 nm

Experimental verifications

Bragg's law:

 $2d\sin\theta = n\lambda$

If θ and λ are known, *d* can be determined

Experimental verifications

Davisson-Germer experiment:

- Electrons were directed onto nickel crystals
- Accelerating voltage is used to control electron energy: E = |e|V
- The scattering angle and intensity (electron current) are detected
 - ϕ is the scattering angle

Experimental verifications

Electron scattering:

From X-ray experiments: *d* = 0.091 nm

$$2d\sin\theta = n\lambda$$

For
$$\varphi = 50^{\circ}$$

($\theta = 65^{\circ}$):
 $\lambda = 0.165 \text{ nm}$

- Application of diffraction to measure atomic spacing
- Single crystal Ni target
- Proved deBroglie hypothesis that $\lambda = h/p$

Davisson-Germer experiment

Proof that $\lambda = h/p$

Accelerated electrons have energy eV: $eV = \frac{1}{2} mv^2 => v = (2Ve/m)^{1/2}$

de Broglie said:

λ=h/p=h/(mv)=h/(2mVe)^{1/2}=1.67 Å Davisson-Germer found lattice spacing: λ=dsinθ=1.65 Å

Excellent agreement between theory and experiment!

Application: Pressure sensing

- Atomic spacing changes with pressure: Pressure=E(ΔL/L) Where E=Young's modulus (N/m²)
- As d (spacing between atomic planes) changes, the angle of diffraction changes
- Diffraction rings move apart or closer together