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Particle in a 1-Dimensional Box

Time Dependent Schrodinger Equation

Region I Region I Region III

V(x)=00 V(x)=0 V(x)=00

v

0 L X
V(x)=0 for L>x>0

V(x)=0 for x>L, x<0

Classical Physics: The particle can
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Wave function is dependent on time and position function:
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Time Independent Schrodinger Equation
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Applying boundary conditions:

exist anywhere in the box and follow Region I'and III:

a path in accordance to Newton’s —h? d? 1//( X)
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Quantum Physics: The particle is Region II:

expressed by a wave function and — k% d? l//( x)

there are certain areas more likely to
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Finding the Wave Function

Our new wave function:
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This is similar to the general differential equation: Normalizing wave function:
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Calculating Energy Levels:
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Particle in a 1-Dimensional Box

. 2 . nm Applying the
Y= Z Sin I Born Interpretation
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