
 

 

 

PARTICLE IN 1-DIMENSIONAL BOX 

 
B.Tech I-Sem 



V(x)=0 for L>x>0 

V(x)=∞ for x≥L, x≤0 

Particle in a 1-Dimensional Box 
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Classical Physics: The particle can 

exist anywhere in the box and follow 

a path in accordance to Newton’s 

Laws. 

 

Quantum Physics: The particle is 

expressed by a wave function and 

there are certain areas more likely to 

contain the particle within the box. 
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Time Dependent Schrödinger Equation 
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Wave function is dependent on time and position function: 
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Time Independent Schrödinger Equation 

Applying boundary conditions: 
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Region I and III: 
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Region II: 
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V(x)=0 V(x)=∞ V(x)=∞ 
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Finding the Wave Function 
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This is similar to the general differential equation: 
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So we can start applying boundary conditions: 
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Our new wave function: 

But what is ‘A’? 

Calculating Energy Levels: 

Normalizing wave function: 
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Since n=    * 
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Our normalized wave function is: 
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Particle in a 1-Dimensional Box 
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Applying the  

Born Interpretation 


