Holography

B.Tech-I

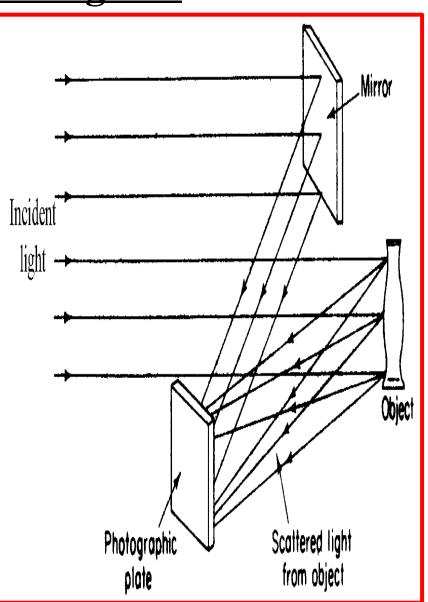
Conent:

- **Basic Principle of holography**
- Construction and reconstruction of image on hologram
- **Application of holography.**

How hologram work

- ☐ The time varying light field of a scene with all its physical properties is to be recorded and then regenerated
- **☐** Working of a hologram divided into two phases.
 - 1) Recording
 - 2) Reconstruction

Hologram: Direct, object and conjugate waves


- □ <u>Direct wave</u>: corresponds to zeroth order grating diffraction pattern.
- □ <u>Object wave</u>: gives virtual image of the object (reconstructs object wavefront) first order diffraction.
- □ Conjugate wave: conjugate point, real image—first order diffraction.
- ☐ In general, we wish to view only the object wave the other waves just confuse the issue.

Recording of hologram

☐ Basic tools required to make a hologram includes
□ Laser
□ Lenses
☐ Beam spiltter
☐ Mirrors
☐ Holographic film
☐ Holograms are recorded in darker environment.

Producing the hologram

- ☐ Practical setup
- ☐ Light source: laser
- ☐ Object: solid, 3D
- ☐ Photographic film: high resolution
- ☐ Hologram pattern: interference fringes
 - —uniform gray
 - —cannot be seen by naked eye containing a series of fringes of
 - various lengths and spacing

Recoding and reconstruction of Hologram

- ☐ Hologram recorded intensity
- ☐ Light wave: vector
- \Box A₁ the signal,
- \Box A_2 —the reference,
- ☐ Each point on hologram:

$$A = |A|e^{-i(\varpi t + \varphi)}$$

$$I(x, y) = (\mathbf{A}_1 + \mathbf{A}_2)^2$$

$$= (\mathbf{A}_1 + \mathbf{A}_2)(\mathbf{A}_1 + \mathbf{A}_2)^*$$

$$= |\mathbf{A}_1|^2 + |\mathbf{A}_2|^2 + \mathbf{A}_1\mathbf{A}_2^* + \mathbf{A}_1^*\mathbf{A}_2$$

$$T(x,y) \propto \mathbf{A}_1 \mathbf{A}_2^* + \mathbf{A}_1^* \mathbf{A}_2$$

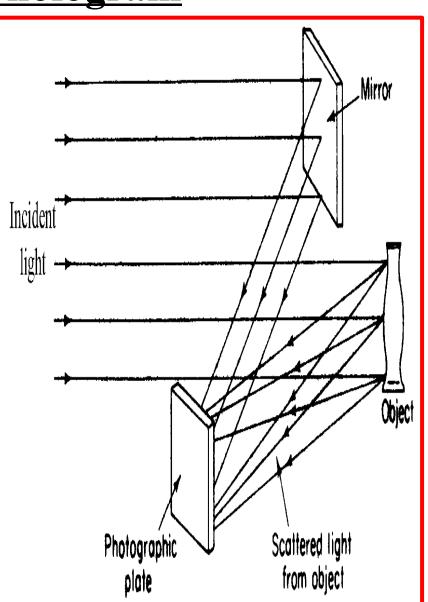
Holography

- ☐ Holography is the production of holograms by the use of laser.
- ☐ Holos—greek for whole massage
- ☐ A hologram is a 3D image recorded in a special photographic plate.
- ☐ Converts phase information into amplitude information(in phase maximum amplitude out of phase minimum amplitude)
- ☐ Interfere wavefront of light from a scene with a reference wave
- ☐ The hologram is a complex interference pattern of microscopically spaceed fringes.
- ☐ The image appears to float in space and to move when the viewer moves.

How hologram work

- ☐ The time varying light field of a scene with all its physical properties is to be recorded and then regenerated
- **☐** Working of a hologram divided into two phases.
 - 1) Recording
 - 2) Reconstruction

Hologram: Direct, object and conjugate waves


- □ <u>Direct wave</u>: corresponds to zeroth order grating diffraction pattern.
- □ <u>Object wave</u>: gives virtual image of the object (reconstructs object wavefront) first order diffraction.
- □ Conjugate wave: conjugate point, real image—first order diffraction.
- ☐ In general, we wish to view only the object wave the other waves just confuse the issue.

Recording of hologram

☐ Basic tools required to make a hologram includes
□ Laser
□ Lenses
☐ Beam spiltter
☐ Mirrors
☐ Holographic film
☐ Holograms are recorded in darker environment.

Producing the hologram

- ☐ Practical setup
- ☐ Light source: laser
- Object: solid, 3D
- ☐ Photographic film: high resolution
- ☐ Hologram pattern: interference fringes
 - —uniform gray
 - —cannot be seen by naked eye containing a series of fringes of
 - various lengths and spacing

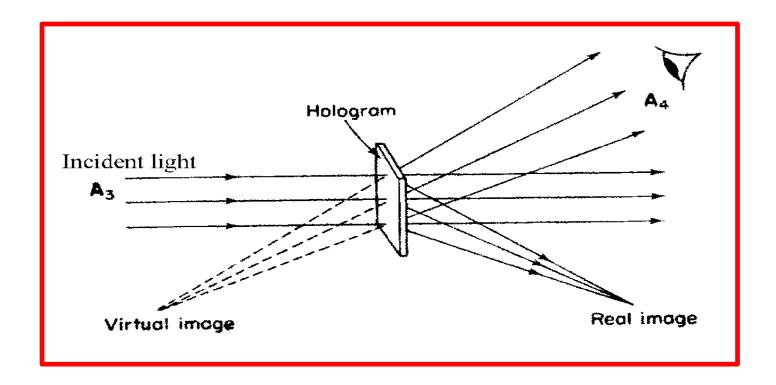
Recoding and reconstruction of Hologram

- ☐ Hologram recorded intensity
- ☐ <u>Light wave: vector</u>
- ☐ A₁ the signal,
- \Box A_2 —the reference,
- ☐ Each point on hologram:

☐ The transmittance function:

$$A = |A|e^{-i(\varpi t + \varphi)}$$

$$I(x, y) = (\mathbf{A}_1 + \mathbf{A}_2)^2$$


$$= (\mathbf{A}_1 + \mathbf{A}_2)(\mathbf{A}_1 + \mathbf{A}_2)^*$$

$$= |\mathbf{A}_1|^2 + |\mathbf{A}_2|^2 + \mathbf{A}_1\mathbf{A}_2^* + \mathbf{A}_1^*\mathbf{A}_2$$

$$T(x,y) \propto \mathbf{A}_1 \mathbf{A}_2^* + \mathbf{A}_1^* \mathbf{A}_2$$

Reconstruction of the hologram

☐ The photographic plate is illuminated with the original reference—beam (light source) used for recording

 $Source: \ http://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Holography-reconstruct.svg/300px-Holography-reconstruct.svg.png$

Types of hologram

	Transmission hologram: refrence and object waves traverse the film from the same side
	Reflection: refrence and object waves traverse the film from the oposite side.
	Rainbow
	<u>Colour</u>
۵	<u>Lens hologram</u>
	<u>fourier</u>

Hologram properties

Provides depth perception.

- ☐ If you look at these holograms from different angles you see object from different prospectives, just like you would if you were looking at the object.
- ☐ They usually just look like sparky pictures or smears of color.
- ☐ If you cut one in half each hellp contains whole views of the entire holographic image.

Why holographic display

□A high resolution 3-D recording of an object
□Glasses free 3-D display
□No need for projection screen
□Interactive display
□Life like images

Conventional vs. Holographic photography

Conventional:

- □ 2-d version of a 3-d scene.
- □ Photograph lacks depth perception or parallax.
- □ Film sensitive only to radiant energy.
- □ Phase relation (i.e. interference) are lost.

Hologram:

- □ Freezes the intricate wavefront of light that carries all the visual information of the scene.
- □ To view a hologram, the wavefront is reconstructed.
- □ View what we would have seen if present at the original scene through the window defined by the hologram.
- □ Provides depth perception and parallax.

Application of Holography

□Educational application.
☐Marketing with 3-D holographic display.
□3D simulation displays for scientific visualization.
☐Improved virtual reality and Augmented reality.
☐Telepresence and video conferencing.
□Entertainment displays.
☐Millitary and space application.
☐ Holographic checkpoint for military, battelfield simulation.s
□Intense and real gaming rooms.
☐ In future holographic displays will be replacing all sizes from small
phonesscreen to large projectors.