

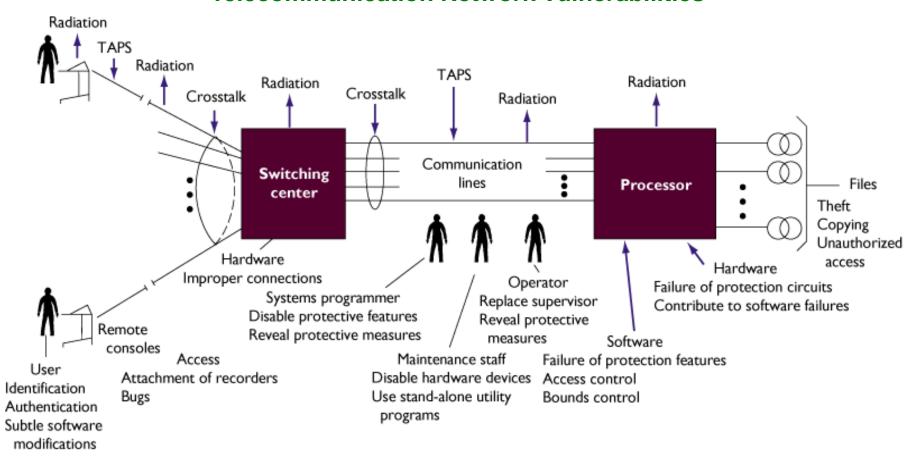
BUILDING **INFORMATION SYSTEMS SECURITY AND** CONTROL

OBJECTIVES

- Why are information systems so vulnerable to destruction, error, abuse, and system quality problems?
- What types of controls are available for information systems?
- What special measures must be taken to ensure the reliability, availability and security of electronic commerce and digital business processes?

OBJECTIVES

- What are the most important software quality assurance techniques?
- Why are auditing information systems and safeguarding data quality so important?


MANAGEMENT CHALLENGES

- Designing systems that are neither overcontrolled nor under-controlled
- Applying quality assurance standards in large systems projects

Why Systems are Vulnerable

- Advances in telecommunications and computer software
- Unauthorized access, abuse, or fraud
- Hackers
- Denial of service attack
- Computer viruses

Telecommunication Network Vulnerabilities

Concerns for System Builders and Users

Disaster

 Destroys computer hardware, programs, data files, and other equipment

Security

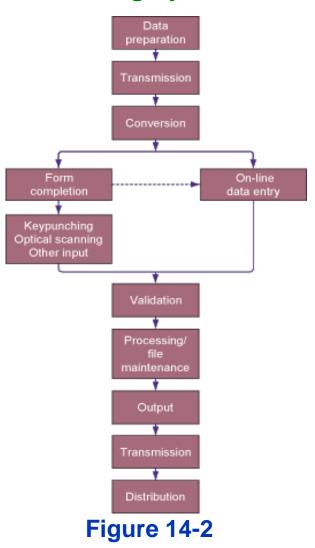
 Prevents unauthorized access, alteration, theft, or physical damage

Concerns for System Builders and Users

Errors

 Cause computers to disrupt or destroy organization's record-keeping and operations

System Quality Problems: Software and Data

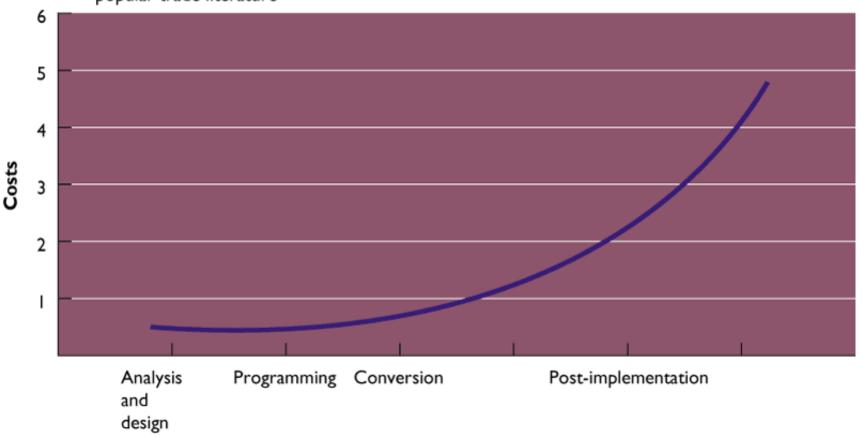

Bugs

Program code defects or errors

Maintenance Nightmare

 Maintenance costs high due to organizational change, software complexity, and faulty system analysis and design

Points in the Processing Cycle where Errors Can Occur


System Quality Problems: Software and Data

Data Quality Problems

 Caused due to errors during data input or faulty information system and database design

The Cost of Errors over the Systems Development Cycle

Estimate of the relative cost of repairing errors based on consultant reports and the popular trade literature

Figure 14-3

Overview

Controls

 Methods, policies, and procedures that ensure protection of organization's assets

 Ensure accuracy and reliability of records, and operational adherence to management standards

General Controls and Application Controls

General controls

 Establish framework for controlling design, security, and use of computer programs

 Include software, hardware, computer operations, data security, implementation, and administrative controls

Security Profiles for a Personnel System

SECURITY PROFILE 1							
User: Personnel Dept. Clerk							
Location: Division 1							
Employee Identification Codes with This Profile:	00753, 27834, 37665, 44116						
Data Field Restrictions	Type of Access						
All employee data for Division 1 only	Read and Update						
 ☐ Medical history data ☐ Salary 	None None						
☐ Pensionable earnings	None						
SECURITY PROFILE 2							
User: Divisional Personnel Manager							
Location: Division 1							
Employee Identification Codes with This Profile: 27321							
Data Field Restrictions	Type of Access						
All employee data for Division 1 only	Read Only						

Figure 14-4

General Controls and Application Controls

Application controls

- Unique to each computerized application
- Include input, processing, and output controls

Protecting the Digital Firm

 On-line transaction processing: Transactions entered online are immediately processed by computer

 Fault-tolerant computer systems: Contain extra hardware, software, and power supply components to provide continuous uninterrupted service

Protecting the Digital Firm

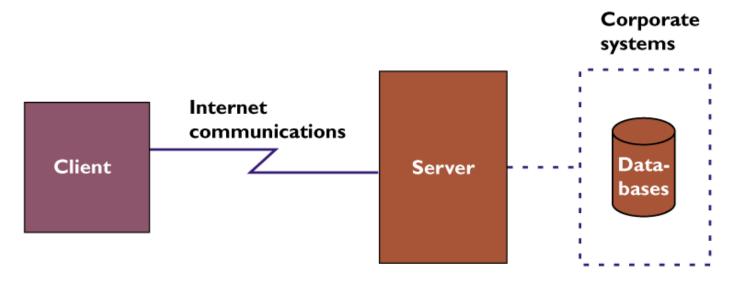
- High-availability computing: Tools and technologies enabling system to recover quickly from a crash
- Disaster recovery plan: Runs business in event of computer outage
- Load balancing: Distributes large number of requests for access among multiple servers

Protecting the Digital Firm

 Mirroring: Duplicating all processes and transactions of server on backup server to prevent any interruption in service

 Clustering: Linking two computers together so that a second computer can act as a backup to the primary computer or speed up processing

Internet Security Challenges


Firewalls

- Prevent unauthorized users from accessing private networks
- Two types: proxies and stateful inspection

Intrusion Detection System

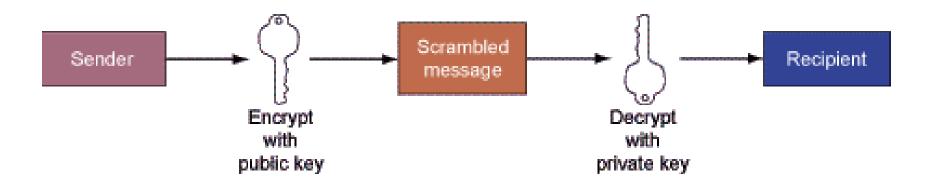
 Monitors vulnerable points in network to detect and deter unauthorized intruders

Internet Security Challenges

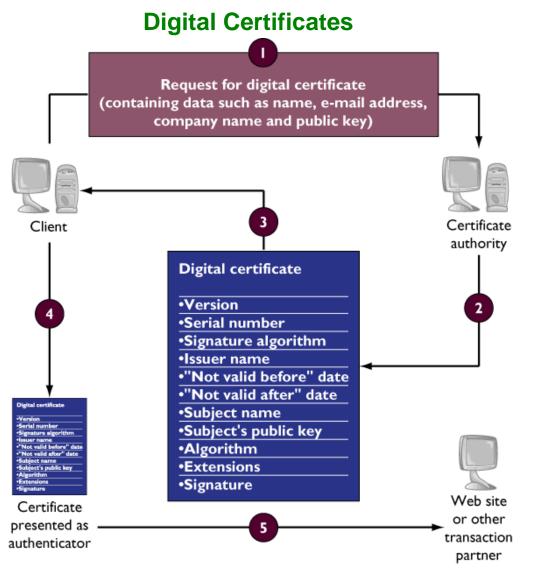
- Computer viruses
- Line taps
- Loss of machine
- Tapping
- Sniffing
- Message alteration
- Theft and fraud

- Hacking
 - Computer viruses
 - Theft and fraud
 - Line taps
 - Vandalism
 - Denial-ofservice attacks

- Theft of data
- Copying of data
- Alteration of data


Security and Electronic Commerce

- Encryption: Coding and scrambling of messages to prevent their access without authorization
- Authentication: Ability of each party in a transaction to ascertain identity of other party
- Message integrity: Ability to ascertain that transmitted message has not been copied or altered


Security and Electronic Commerce

- Digital signature: Digital code attached to electronically transmitted message to uniquely identify contents and sender
- Digital certificate: Attachment to electronic message to verify the sender and to provide receiver with means to encode reply

Public Key Encryption

Figure 14-6

Figure 14-7

Developing a Control Structure: Costs and Benefits

Criteria for determining control structure

- Importance of data
- Efficiency, complexity, and expense of each control technique
- Level of risk if a specific activity or process is not properly controlled

The Role of Auditing in the Control Process

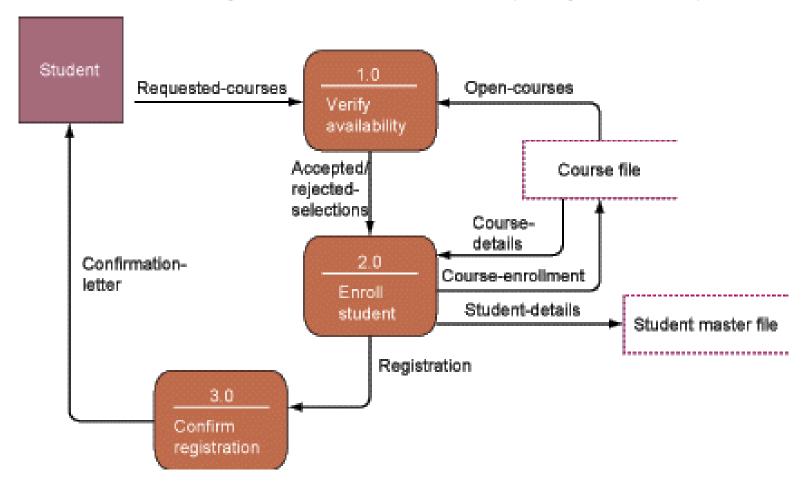
MIS audit

 Identifies all controls that govern individual information systems and assesses their effectiveness

Sample Auditor's List of Control Weaknesses

Function: Personal Loans Location: Peorla, III		Prepared by: J. Ericsor Preparation date: June 1	B, 2001 Re		T. Barrow June 28, 2001
Nature of Weakness and Impact	Chance for Substantial Error		Effect on Audit Procedures	Notification to Management	
	Yes/ No	Justification	Required Amendment	Date of Report	Management Response
Loan repayment records are not reconciled to borrower is record during processing.		Without a detection control, errors in individual client balances may remain undetected	Confirm a sample of loans.	5/10/01	Interest Rate Compare Report provides this control.
There are no regular audits of computer-generated data (interest charges).	Yes	Without a regular audit or reasonableness check, widespread miscalculations could result before errors are detected.		5/10/01	Periodic audits of loans will be instituted.
Programs can be put into production libraries to meet target deadlines without final approval from the Standards and Controls group.	No	All programs require management authorization. The Standards and Controls group controls access to all production systems, and assigns such cases to a temporary production status.			

Software Quality Assurance Methodologies and Tools


- Development methodology: Collection of methods, for every activity within every phase of development project
- Structured: Refers to fact that techniques are carefully drawn up, stepby-step, with each step building on a previous one

Software Quality Assurance Methodologies and Tools

 Structured analysis: Method for defining system inputs, processes, and outputs, for partitioning systems into subsystems or modules

 Data Flow Diagram (DFD): Graphically illustrates system's component processes and flow of data

Data Flow Diagram for Mail-in University Registration System

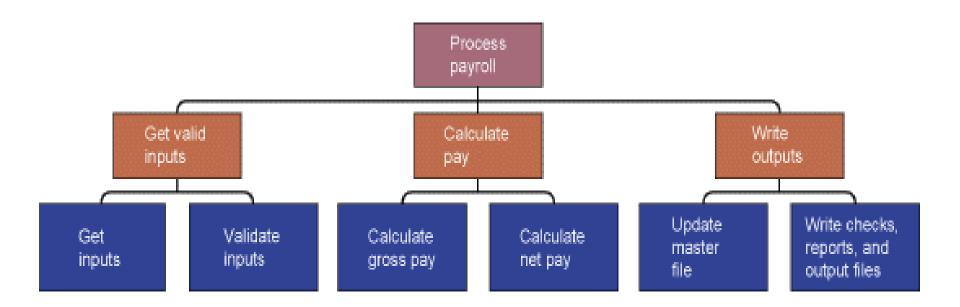


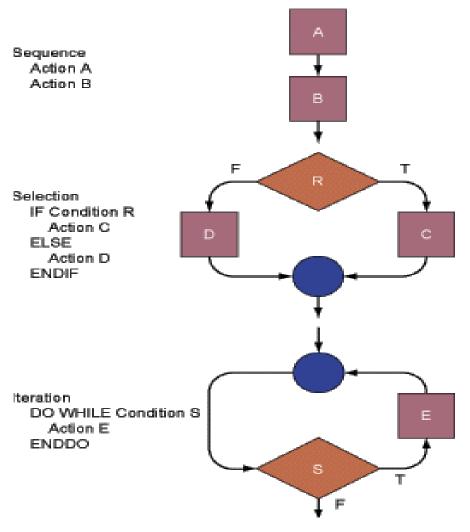
Figure 14-9

Software Quality Assurance Methodologies and Tools

- Structured design: Encompasses set of design rules and techniques for designing systems from top down
- Structured programming: Organizing and coding programs that simplify control paths

High-Level Structure Chart For a Payroll System

Limitation of Traditional Methods


Inflexible

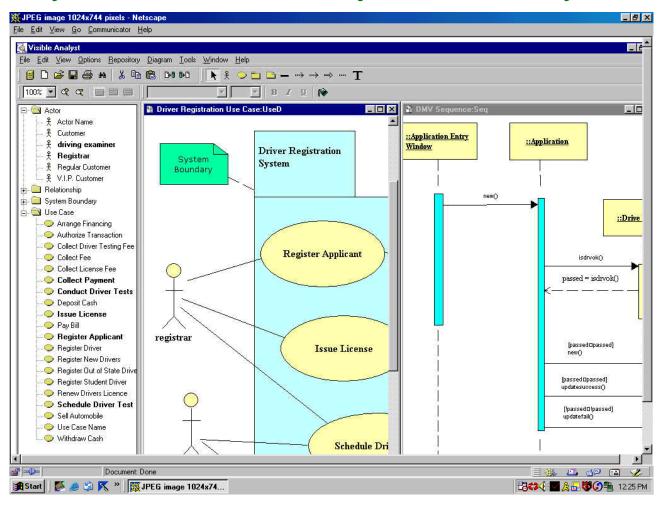
Time-consuming

Tools and Methodologies for Object-Oriented Development

- Unified Modeling Language (UML) has become industry standard for analyzing and designing object-oriented systems.
- Structural diagrams describe the relation between classes.
- Behavioral diagrams describe interactions in an object-oriented system.

Basic Program Control Constructs

Figure 14-11


Computer-Aided Software Engineering (CASE)

- Automation of step-by-step methodologies for software and systems development
- Reduces repetitive work
- Enforces standard development methodology and design discipline
- Improves communication between users and technical specialists

Computer-Aided Software Engineering (CASE)

- Organizes and correlates design components
- Automates tedious and error-prone portion of analysis and design, code generation, testing, and control rollout

Visible Analyst: A Tool to Automate Object-Oriented Analysis and Design

Figure 14-12

Resource Allocation During Systems Development

Resource allocation

 Determines how costs, time, and personnel are assigned to different phases of systems development project

Software Metrics

 Objective assessment of software used in the system in form of quantified measurements

Testing

 Walkthrough: Review of specification or design document by small group of people

 Debugging: Process of discovering and eliminating errors and defects in program code

Data Quality Audit and Data Cleansing

Data quality audit

- Survey and/or sample of files
- Determines accuracy and completeness of data

Data cleansing

 Correcting errors and inconsistencies in data to increase accuracy