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Functions of a Complex Variable

= Function of a complex variable

Let s be a set complex numbers. A function f defined on
S 1s a rule that assigns to each z in S a complex number
w.

Complex \

Complex
numbers f

numbers

----------------

The domain of definition of f The range of f



Functions of a Complex Variable

Suppose that w=u+1v 1s the value of a function f at z=x-+1y,
so that

u+iv=f(x+iy)
Thus each of real number u and v depends on the real
variables x and y, meaning that

J(2) =ulx,y) +iv(x, y)

Similarly 1f the polar coordinates r and 0, instead of x and
y, are used, we get

f(2)=u(r,0)+iv(r,0)



Functions of a Complex Variable

= Example 2
If f(z)=2?, then

case #1: z=x+iy

When v=0, f is a real-valued function.

f(@)=(x+iy) =x"—y* +i2xy
= u(x,y) = x>~ y}u(x, ) = 2y

case #2: 7 — e

f(2)=re’) =r°e”’ =r° cos20 +ir’ sin 26

= L(r.0) =1 cos 20:v(r,0) = 1 sin 20



Functions of a Complex Variable

= Example 3

A real-valued function 1s used to 1llustrate some important
concepts later in this chapter 1s

f(2)=z[=x>+y>+i0
= Polynomial function
P(z)=a,+az+a,z’ +..+a z"

where n 1s zero or a positive integer and a,, a,, ...a, are complex

constants, a_ is not ;The domain of definition is the entire z plane

= Rational function

the quotients P(z)/Q(z) of polynomials
The domain of definition is Q(z)#0
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Functions of a Complex Variable

= Multiple-valued function

A generalization of the concept of function 1s a rule that
assigns more than one value to a point z in the domain
of definition.

Complex

Complex
numbers f

numbers




Functions of a Complex Variable

= Example 4

Let z denote any nonzero complex number, then z!2 has
the two values

0

1/2 .
z' T =XNT eXp(l 5) Multiple-valued function

If we just choose only the positive value of +Jr

.0
Zl/2 = \ﬁexp(z 5), r >0 Single-valued function



Mappings

= Graphs of Real-value functions

f=tan(x) (0, 1)

f=eX
Note that both x and f(x) are real values.



Mappings

= Complex-value functions

(@) =f(x+yi)=u(x,y)+iv(x, y)

mapping

.,
o
.
.
e

e,
N
.,
‘e
‘e
LN
.,
.
.

Note that here x, y, u(x,y) and v(x,y) are all real values.




Mappings

= Examples
y V
. o ®
w=z+]= (x+1)+ly z(x,y) w(x+1,y)
Translation Mapping
X u
y Y
W_;_x_ y .’Z(X,y)
=Z= Vi S
Reflection Mapping
-, .W(X,-y)
s
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Mappings
= Example

: : ; : 7T
w=1z = l(relg) =r exp(z(&’ + E)) Rotation Mapping
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Mappings

= Example 1

2 2 2
w=z" u=x -y ,v=2xy
Let u=c,>0 in the w plane, then x?-y?=c, in the z plane
Let v=c,>0 in the w plane, then 2xy=c, in the z plane

V v
3 =gy )

1 S ——F—v=c,>0
N\ N
T i O X O i
\\
\
\ !
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Mappings

= Example 2

The domain x>0, y>0, xy<I consists of all points lying on
the upper branches of hyperbolas

2 2
u=x —Yy,

y X v=2xy=2=xy=1
Al D

| i 2i E

| . 4

— III
x=0,y>0 \ E
\\ ______________________
C 4 B C i
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Mappings

= Example 3

2 2 i26 i
w=z"=re¢ In polar coordinates
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Mappings by the Exponential Function

= The exponential function

z X+i X z .
w=e =e¢e " =eel,z=x+iy
i
pe’® p=ex B=y
1 [
X = Cl

3, % Q expc, U
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Mappings by the Exponential Function

= Example 2
1 v
5 D ¢
7 A B
o a i? X o

w=exp(z)
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Mappings by the Exponential Function

= Example 3

w=exp(z)=ex*!
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Limits

= For a given positive value €, there exists a positive value o
(depends on €) such that

when 0 <|z-z,| <9, we have |{(z)-w,|<¢&

meaning the point w=1(z) can be made arbitrarily chose to w,,
if we choose the point z close enough to z, but distinct from

1t.
J;

0

’f..--""
!
oW
|
\

U

e

™,

g
.g/\1
}U' fa'

0,
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lim f(z) =w,

Z—)ZO



Limits

The uniqueness of limit
If a limit of a function f(z) exists at a point z0, 1t 1s unique.
Proof: suppose that lim f(z) =w, &lim f(z) =w,

Z—)ZO Z—)ZO

then Ve&/2>0,36,>0,36,>0
when 0<|z-z <& T—> |f(z2)—-w,|<e/2;
0<z—z, <o, —> |f(z2)-w|<e/2;

Let 6=min(5,,6,) , when 0<|z-z,|<6, we have

=W =w, = (f(2)—wy)—(f(2)—w)|

Qf @) -wy |+ f(2)-wm |<§+§=s
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Limits

= Example 1
Show that f(z)=iz/2in the open disk |z|<1, then

: I
ng}f(z) = 5

Proof: _ _
i iz i, |illz-1| |z-1|
Z)—— = ——— |= =
A g s 5 5

Ve >0,E|5:25,S.t. y v
when 0<|z-1|<d(=2¢ /’/#“n:x;‘n\ 70>

|z-lj<o(=2¢) / AN S0

| I.f ® 1 gt | Bt
—1 ] ‘ O N Iox O U
:>O<|Z2 |<g:>|f(z)—5|<g & L y
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Limits

= Example 2

If /(== then the limit lim /(z) does not exist.

z

z=(x,0) limx+lO
=0 x —i(

=

z=(0,y) lim—
y—)OO_ly

O+iy

=1
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Theorems on Limits

= Theorem 1
Let f(z)=u(x,y)+iv(x,y) z=Xx+iy

and z, =X, Ty, W, =u, +1v,

then .
lim 7(z2) = w, (a)
if and only 1f
lim wu(x,y)=u, and lim  v(x,y)=v, (b)

(x,1)=>(x9,Y0) (x,)—>(x0,)0)
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Theorems on Limits

= Proof: (b)=>(a)
( )lir(n )u(x, y)=u, & lim  v(x,y) =y, |:> lim f(z) =w,

(x,)=>(x9,)0) 2%

Ve/2>0,30, > 0,30, > 0s.t.

When O<\/(X_x0)2+(y_yo)2 <51 |:> |M(X>J/)_Mo |<§

0<\J(x—x,) +(y—x,)" <8, = xy)=v |<§

Let 6 =min(S},d,) When 0<./(x—x,)*+(y—1,)° <8,ie0<z—z,|<&
| f(2)=w, [H (u(x, ») +iv(x, y) = (uy +ivy) | =ulx, y) —u, +i(v(x, y) —v,) |
E &

S|M(X,y)—lxlo |+|V()C,y)—VO |<§+§:g
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Theorems on Limits

= Proof: (a)=»(b)

hm f(Z) — WO |:> hm )Z/l(x,y) :uo & hm )v(x,y) :VO

zZ—>z, (x,¥)=>(xp, ) (x,1)>(x0,)0

Ve>0,30>0st wWhen 0<z—2z, <o = |f(z2)-w,|<¢
| f(2)=w, FHulx, y) +iv(x, y) = (u, +iv,) |
= (u(x, y) —uy) +i(v(x, y) =v,) < &
| uCx, y) —uy [<] (u(x, y) —uy) +i(v(x, y) —vy) < &
[ v(x, y) =V, IS (u(x, ) —up) +i(v(x, y) = v, ) < &

Thus |M(X,y)—l/lo |<g;|v(x,y)—v0 |<‘9
When (X,y)=2(Xo,Yo)
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Theorems on Limits

* Theorem 2
Let lim/z)=w, and lmF(z)=7W,

then im[ f(z) £ F(2)]=w, W,
hm[ f(2)F(z)]=w,W,

tim( £ = 2, =0
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Theorems on Limits

lim f(z)=w, & limF(z)=W, => Um[f(2)F(2)]=wMW,

z—>z, z>z, 2=z

Let  £(2)=u(x,y)+iv(x, ), F(z) =U(x, y) +iV(x, y)
Zy =X, +iyO;WO =U, +iv();VV() :UO +ZI/O

f(F(z)=U—vV)+i(vU +ulV)

Iim f(z)=w
z—>2 /) 0 When (x,y)2 (X0,¥o);
. u(Xo}I)%uO; V(Xa}I)eVO; & U(XaY)eUm V(Xa}I)eVOa
lim F(z)=W,
Z—)ZO

N
Re(f(z)F(2)): (uOU 0 VOVO )

Im(f(2)F(2)): (VU +uel})
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Theorems on Limits

It 1s easy to verify the limits

Iimc=c limZ:ZO lim z” :Zg(n:1,2,...)

z—z, Z=2 =2

For the polynomial

P(z)=a,+az+a,z" +..+a z"
We have that

lim P(z) = P(z,)

Z—)ZO
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Limits Involving the Point at Infinity

= Riemannsphere & Stereographic Projection

N: the north pole

28



Limits Involving the Point at Infinity

= The € Neighborhood of Infinity

When the radius R is large enough
R
i.e. for each small positive number ¢
>
O « R=1/¢
The region of |z|>R=1/¢ is called the
€ Neighborhood of Infinity(«)
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Limits Involving the Point at Infinity

= Theorem

If z, and w,, are points 1n the z and w planes,
respectively, then

lim f(z) =00 i  lim——=0

Z—>Z, z—>z, f(Z)

Z—>0

lim f(z) =w, iff liIIOI f (l) =W

1
=0
6)

lim f(z) = iff  lim

Z—>00 z—0
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Limits Involving the Point at Infinity

= Examples
. iz4+3 | . 2t
lim — o0 since lim - =]
z—>—1 74+ 1 —>-117+4+3
27 + i . . 2/2)+i . 241z
lim — 72 since lim , — lim —A
z—00 7+ 1 —=0(1/2)+1 50147
. 2731 | (/BH+1 o+
lim — o0 since lim — lim — 0.
Z— 00 :2—|—1 z—0 (2/:3 — 1 z—0 2—:3
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Continuity

= Continuity

A function 1s continuous at a point z, 1f

lim f(z) = f(z,)

Z—)ZO

meaning that
|. the function f has a limit at point z, and

2. the limit 1s equal to the value of f(z,)

For a given positive number ¢, there exists a positive number J, s.t.

When |z—2z,[<O | f(2)—f(z)|<e
0<z—z,|<0?
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Continuity

" Theorem 1
A composition of continuous functions i1s itself continuous.

Suppose w=f(z) is a continuous at the point z;
g=g(f(z)) is continuous at the point f(z,)

Then the composition g(f(z)) is continuous at the point z,

¥ L V
/// -_““R&\
_—— T < ~
~J -
// X // ‘-\\\ // \\
A 7
L g \ gl
leZ 'z, }J ;&‘ ; !’X \
\ I o | 1
o A? I fleo) | I ~eglflzg)] |
= \ / | L
O X ol fu N @ / L
AN /
" .f(Z) & \\ //
S N y
\\""-. ///
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Continuity

= Theorem 2

[f a function f (z) 1s continuous and nonzero at a point z,,
then f (z) # 0 throughout some neighborhood of that point.

Proof lim f(Z) = f(ZO) =0

.................
.....

Why?
|f(2Z°)|>OEI5>O st

wns
ws®
wet®
v
.
.
.
o
.

K
|f(Z)—f(ZO)|<g:|f(2ZO)|
fFii210, then | /(zy)l< L2 ved f(z)]

Contradiction!
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Continuity

Theorem 3

If a function f 1s continuous throughout a region R that 1s
both closed and bounded, there exists a nonnegative real
number M such that

| f(Z) |S M for all points zin R

where equality holds for at least one such z.

Note: | f(2)|= \/uz(x,y)+v2(x,y)

where u(x,y) and v(x,y) are continuous real functions
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Derivatives

Derivative

Let f be a function whose domain of definition contains
a neighborhood |z-z,|<¢ of a point z,. The derivative of {
at z, 1s the limit _

0 f'(Z()) — hrn f(Z) f(ZO)

Z—)ZO z — ZO

And the function f 1s said to be differentiable at z, when
(z,) exists.
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Derivatives

= [llustration of Derivative

__—__Any position

. Z)— z - . .
£(z0) = lim L =S 7N
s Z_ZO |\ < ® /
(2.) = im £ G+ A = [ (2) ::ﬁ .r::-;, St
f (ZO) ) gg}) Az o %
z=2z,+Az f(zy+Az)
\/
AW:f(ZO -I—AZ)—f(ZO) Aw
D fjm 2 f(z,)
—=lim —
dZ Az—0 AZ 5 u
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Derivatives

= Example 1
Suppose that f(z)=z2. At any point z

2 2
lim &Y fim EAD) T2 i (224 Az) =22
Az—0 Az Az—0 Az Az—0

since 2z + Az 1s a polynomial in Az. Hence dw/dz=2z or ’(z)=2z.
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Derivatives

Jase #2 .-~

Case #1

= Example 2
If f(Z):—Z, then Aw _ z+Az—z _ z+Az—z _ Az
Az Az Az Az
Az =(Ax,Ay) — (0,0) In any direction Ay
Case #1: Ax»0,Ay=0 i
lim Az = Ax—i0 =1 0‘1&
a0 Az Ax+10 : '

Case #2: Ax=0, Ay->0

lim Az  0—iAy _

— ~1
20 Az 0+iAy

Since the limit is unique, this function does not exist anywhere

39
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Derivatives

= Example 3

Consider the real-valued function f(z)=|z|*. Here

2 2 A _
Aw:|z—|—Az| |z | :(Z+AZ)(Z+AZ) ZZ=Z+AZ+Z¥
Az Az Az Az
Case #1: Ax—2>0, Ay=0
lim(Z+E+zg)=lim(Z+Ax+zAx_lO):Z+z
Ax—0 Az Ax—0 Ax+1i0
Case #2: Ax=0, Ay—=>0
lim(z + Az + 222) = lim(z —iAy + 22—y 27—,
Ay—0 Az Ay—0 O+1Ay
z+z=z—z=>z=0 dw/dz can not exist when z is not 0
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Derivatives

= Continuity & Derivative
Continuity% Derivative

For instance,
f(z)=|z|? is continuous at each point, however, dw/dz does not exists when z is not 0

Derivative ——> Continuity

lim[ f(z) - f(ZO)]—hm AC f(ZO)hm(z zy)=1"(2,)0=0

zZ—> ZO zZ—> ZO Z Z zZ—> ZO

Note: The existence of the derivative of a function at a point implies the continuity
of the function at that point.
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Differentiation Formulas

= Differentiation Formulas

=02 =L (2 =of ()

F(z)=g(f(2))
%[z"] _nz"! Referto pp.7 (13) F'(z))=g'(f () f (z,)
] dw _ aw dw
()22 = (%8 @) & dw &

%mz) e ()= f(2)0g'(@)+ [ ()0 g(2)

d [f(Z)]: S(2)eg(2)-f(2)2g'(2)

dz g(z) [g(2)]
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Differentiation Formulas
= Example

To find the derivative of (2z>+1)°, write w=2z>+1 and
W=w-. Then

a’i(Zz2 +i)’ =(5whw'=5(2z" +i)*(42) =20z(2z" +i)°
Z
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Analytic Function

= Analytic at a point z,

A function f of the complex variable z 1s analytic at a
point z, 1f 1t has a derivative at each point in some
neighborhood of z,.

Note that if /'1s analytic at a point z,, it must be analytic at each
point in some neighborhood of 7z,

= Analytic function
A function f 1s analytic 1n an open set if 1t has a
derivative everywhere 1n that set.

Note that i1f / 1s analytic in a set S which 1s not open, it 1s to be
understood that fis analytic in an open set containing S.
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Analytic Function

= Analytic vs. Derivative

» For a point
Analytic =» Derivative\/
Derivative =» Analytic x

» For all points in an open set
Analytic = Derivative\/
Derivative =» Analytic

f 1s analytic in an open set D iff fis derivative in D
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Analytic Function

= Singular point (singularity)

[f function f fails to be analytic at a point z, but 1s analytic at
some point in every neighborhood of z,, then z, 1s called a
singular point.

For instance, the function f(z)=1/z 1s analytic at every point in the

finite plane except for the point of (0,0). Thus (0,0) 1s the
singular point of function 1/z.

= Entire Function

An entire function 1s a function that 1s analytic at each point
in the entire finite plane.

For instance, the polynomial 1s entire function.
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Analytic Function

= Property 1
If two functions are analytic in a domain D, then

» their sum and product are both analytic in D

» their quotient is analytic in D provided the function in the
denominator does not vanish at any point in D

* Property 2
From the chain rule for the derivative of a composite function, a
composition of two analytic functions is analytic.

% ¢(f () =g Tf D)
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Analytic Function

= Theorem

If £ ’(z) = 0 everywhere 1n a domain D, then f (z) must be
constant throughout D.

f'@)=u +iv,=v, —iu,=0
u . =u,=0&v, =v =0

du , :
E =(gradu)]  gradu=u i +u,j

U is the unit vector along L
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Example z2 is Analytic

Lf@ﬁzzzzxg—y2+2hwz=u+iv

. f"exists & single-valued V finite z.

i.e., z%is an entire function.

Z=X+1y
ov
oy =_2Y
4 0 Xx



Example: z*is Not Analytic

Z=X+1y
f(Z)ZZ*ZX—iy =u+iv
u=x
N a_”zl;,g_l:ﬂ a_”:():_ﬂ
V=-y 0 x oy 0y 0 x

~. f'doesn’t exist V z, even though it is continuous every where.

i.e., z?is nowhere analytic.



Examples

= Example

Suppose that a function /(2) =u(x,y)+iv(x,») and its
conjugatef(z) =u(x,y)—iv(x,y)  are both analytic in a
given domain D. Show that f(z) must be constant
throughout D.

—V

Proof: f(z)=u(x,y)+iv(x,y) isanalytic, then U, =V,,U, =—V,

f(@)=u(x,y)—iv(x,y) isanalytic, then U, =—"V,,U, =V,

>ux:0,vx:0 ﬁ f'(Z)Zux+iVx:O

Based on the Theorem in pp. 74, we have that f is constant throughout D
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Examples

= Example

Suppose that f 1s analytic throughout a given region D, and
the modulus |f(z)| 1s constant throughout D, then the
function f(z) must be constant there too.

Proof:
f(z)]=c, forallzmD
where c 1s real constant.
If ¢c=0, then 1(z)=0 everywhere 1n D.
If ¢ #0, we have

f@f@)=c == f()—

Both fand it conjugate are analytic, thus f must be constant in D. (Refer to Ex. 3)
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Uniquely Determined Analytic Function

* Lemma
Suppose that
a) A function f 1s analytic throughout a domain D;

b)1(z)=0 at each point z of a domain or line segment
contained 1n D.

Then f (z) = 0 1n D; that 1s, f (z) 1s 1dentically equal to zero
throughout D.

Refer to Chap. 6 for the proof.
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Uniquely Determined Analytic Function

= Theorem

A function that 1s analytic in a domain D 1s uniquely
determined over D by its values in a domain, or along a
line segment, contained in D.

f(2)=g(2)

{(z) 2(2)
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Reflection Principle

= Theorem

Suppose that a function f is analytic in some domain D
which contains a segment of the x axis and whose lower
half 1s the reflection of the upper half with respect to that

axis. Then f(2)= f(;)

for each point z in the domain 1f and only 1f f (x) 1s real for
each point x on the segment.
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