Cauchy-Riemann Equation



Functions of a complex variable

Let S be a set/of complex numbers.
A function defined on S is a rule that assigns to each zin S a complex

number w.
value of f at z, or f(2)

> W:f(z)

S is the domain of definition of

1
w= ; sometimes refer to the function frcself, for simplicity.
w=z"+1

Both a domain of definition and a rule are needed in order for a function to be
well defined.



Suppose w =y + #srthe value of a function at 1 zZ=Xx+1iy
u+iv=f(x+iy)
or f(z) = u(x,y)+iv(x,y)
N\ /
real-valued functions of real variables x, y
or f(z) = u(r,9)+iv(r,6?)

Ex.

fz)=2"

f(x+iy):x2 —y° +i2xy

u(x,y)=x" -y,  v(xy)=2xy
f(rei‘g) =r° c0s260 +ir’ sin 20
u(r,0)=r’cos20  v(r,0)=r’sin26

when v=0
f(Z)is a real-valued function of a complex variable.



f(z) — P(z) =a, +alz+a222 +...4+a, z" is a polynomial of degree n.

P)
0(2)

: rational function, defined when O(z)#0

For multiple-valued functions : usually assign one to get single-valued function

Ex.

z=re’, z#0
Z%:i\ﬁei%, —r<0@<m nth root
If we choose f(z):xﬁei% (r>0,-7<0<7)
T 60 &
2 2 2
and / (0) =0,

then / 1s well defined on the entrie complex plane except

the ray 0=r.



Mappings
w=£(z) is not easy to graph as real functions are.
One can display some information about the function by indicating pairs
of corresponding points z=(x,y) and w=(u,v). (draw z and w planes

separately).

When a function f is thought of in this way. it is often refried to as a mapping, or
transformation.

inverse image image of z

S image of T



Mapping can be translation, rotation, reflection. In such cases

it is convenient to consider z and w planes to be the same.

w=z+1 translation +1

w=iz rotation 0

w=  _ reflection in real axis.2
7

Ex. image of curves

real number y=x’

Ay
2
w=z
2 2
U=x" —y
v=2xy ;

2

a hyperbola x* —y~ =¢, is mapped in a one to one manner onto the line ¥ = ¢,



A u=C1>1
st SEEEEEE SEEERES » \/=C2>0
A
> U
image
right hand branch x>0, u=Ct, V =2y, /yz +c, (—oo <y< oo)

left hand branch x<0 u=Ca, V:_zy‘/)f +c, (—oo<y<oo)



Ex 2. y al1 L2

: Av
D : LAZ\’Q
A A L'],
L B> \m
C X1 1 X : ;
0<x<l1 D" C
y=>0

When 0 <X, < point (xlr,mo)/es up a vertical half line, L1, as y increases
fromy=0.

u=x"-y>, v=2xy

2

v

u=x —(z—j ,  vi=—4x] (u —xlz) «—— a parabola with vertex at (xf,O)
xl

half line CD is mapped of half line C'D’
(O’y) <_y290>



Ex 3.
W= ZZ — r26i2(9
let w= pe”

p=r>, ¢=20+2nx (nzO,il,i2,...)
VA/ AV

> LD

L
X

r>0, 0<@<z Onetoone = p=>0, O0<g=<x




Limits
Let a functi nfb fined at all points z in some deleted neighborhood of zo
m 1(2) = W, (1)
zZ—> ZO

means: the limit of  f (z3s z approaches zo is wo

w= f(z) can be made arbitrarily close to wo if we choose the point z close

enough to zo but distinct from it.

(1) means that, for each positive number ,t(l;ere is a positive number 5
such that
|f(z)—w0|<g whenver O<|Z—ZO|<5 (2)
y| v
~~~~~~ Wg}
ZOO}
X
0 u




Note:
(2) requires that f be defined at all points in some deleted neighborhood of zo

such a deleted neighborhood always exists when zois an interior point of a
region on which isdefined. We can extend the definition of limit to the case in
which zo is a boundary point of the region by agreeing that left of (2) be satisfied by
only those points z that lie in both the region and the domain

O<\Z—Z |<5

Example 1. s%ow if -

f(z)= EZ in |Z| <1, then

: I
Wi ) ==



when z in |z|<1

For any such z and any positive number &

f(z)—i <& whenever (<|z—1|<2¢
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When a limit of a function f(@?ists at a point , itzl’sounique.
Fnot, suppose  1im £ (z) = # lim f(z)=w,

Then ‘f(z)_wo
|f(Z)—W1|<5 whenever O<|Z—ZO|<51
8 =min (3,4, )

if O<|Z—zo|<5
‘[f(z)_WO]_[f(Z)_Wl]‘§|f(2)—wo|+‘f(z)—wl‘<25

ém —w,| < 2¢

<&  whenever 0< |Z —zO| <6,

Let

Hence|w1 — w0| is @ nonnegative constant, and @n be chosen arbitrarily small.

w—w,=0, or w=w,



Ex2. If f(z):i (4)

then does not exist.
e .O
show:  ywhen z=(x,0) f(z)= f:;o =1 |
when z=(0,) f(z)= gfg =1 -

since a limit is unique, limit of (4) does not exist.

(2) provides a means of testing whether a given point Wois a limit, it does

not directly provide a method for determining that limit.



Theorems on limits

Thm 1. Suppose that

f(z) =u(x,y)+iv(x,y), Zy, =X, + 1y,

and w,=u, +iv,

Then lim f(z)=w, iff

zZ—z
lim  wu(x,y)=u, and lim  v(x,y) =y,
(x,y)—>(x0,¥0) (x,»)—>(x0,¥0)

pf:” & ‘u—u0‘<§ whenever O<\/(x—x0)2+(y—J/o)2 <o,

‘v—v0‘<§ whenever O<\/(x—xo)2+()/_)/o)2 <0,

let o0 =min(9,,0,)



since

o ‘(u+iv)—(u0 +iv0)‘ :‘(u—u0)+i(v—v0)‘ < ‘u—uo‘ﬂv—vo‘

\/(x—x0)2+(y—y0)2 =‘(x—x0)+i(y—y0)‘:‘(x+iy)—(x0+iyo)‘
‘(u+iv)—(u0—iv0)‘<§+§=g
whenever 0 < ‘(x+iy)—(x0 +iy0)‘ <o

=

But ‘(u +iv) —(uo — 1V, )‘ <& whenever 0< ‘(x+iy)—(x0 +1y, )‘ <o

|u—u0|S‘(u—u0)+i(v—v0)‘=‘(u+iv)—(u0 +iv0)‘ <&

and |v—v0|S‘(u—u0)+i(v—vo)‘=‘(u+iv)—(u0+iv0)‘ <&

2

‘()H'iy)_(xo+iy0)‘:\/(x_xo)2+(y_yo)

Lu—u|<e  and |v-v|<e

whenever (< \/ (x it ) ey )’ <O



Thm 2. suppose that

lim f(z)=w, and limF(z)=W,

Then Zli_)nzl[f(z)ntF(z)] =w, + W,
lim [ £(2)-F(2)] = w,
and if W,#0
£2) _ W

lim
z—>z, F(Z) I/VO

pf: utilize Thm 1.

for@- f(2) =u(x, y)+iv(x, y)
F(z)=U(x,y)+iV(x,y)

(7)

©)

ZOZ)C0+Z)/O, WO:MO+ZVO,

use Thm 1. and (7)

w,=U,+iV,



f(2)F(z)=wU—-vV) +i(vU + uV) have the limits
U U
uUg =voby U +uph,,
= WM,

An immediate consequence of Thm. 1:

Iime=c

Z—)ZO

limz=z,
z>2,

lim 2" — ZOn (n=1,2.) by property (9) and math induction.

P(z)=a,+az+a,z’ +..+az"
lim P(z) = P(z,)

Z—>z

-if  him f(z) =w,,then 11m|f(z)| |w0|

zZ—>z

(11)

Hf(Z)‘ —‘WOH <|f(z2)-w,|<& whenever 0<|z—z|<o



Limits involving the point at Infinity

It is sometime convenient to include with the complex plane the point at infinity,

00
denoted by  , and to use limits involving it.

Complex plane + infinity = extended complex plane.

)‘\\P

e

complex plane passing thru the equator of a unit sphere.

To each point z in the plane there corresponds exactly one point

P on the surface of the sphere.

'
intersection of the line z-N with the surface.
T
north pole

To each point P on the surface of the sphere, other than the north pole N,
there corresponds exactly one point z in the plane.



By letting the point N of the sphere correspond to the point at infinity, we obtain a
one-to-one correspondence between the points of the sphere and the points of the

extended complex plane.

upper sphere exterior of unit circle
1 points on the sphere close to N
|Z| > — «—
E
|
& neighborhood of 0
e limf(z)=»
zZ—>z

= |f(z)|>l whenever O<|Z—ZO|<5
g

= ‘ 1 —0|<&  whenever O<|z—zo|<5
f(2)
1
Slim f(z)=0  iff lim =0
z>z, z>z, f(Z)
. iz+3 : . z+1
Exl. lIm =00  since lim =0

z—>-1 7z 4] z>-177 4+ 3



N

Ex 2.

lim £(z) = w,

Z—>0

f(z)—w0|<8

&) —w|<e

lim £(z) = w,

Z—>0

. 2z4+1
lim —
220 z+]

=2

whenever |Z| > l

whenever 0< ‘Z — O‘ <0

i lim (D) =w,

2. .
: : (;)+l . 2+iz
since hng 0 :11113
zZ=> (—)+1 z= 1+Z



o limf(z)=o0

Z—>0

S f(z)| > 1 whenever |Z| > 1
E o
& f (1) > 1 whenever 1 > 1
z g z
1
= —0|<e&e  whenever O<‘Z—0‘<5
fd/z)
|
lim f(z) =0 iff lim =0
Z—>00 z—0 f(%)
3
Ex 3. . 2z -1
lim — = o0
2o 77 4]
| 3
since lim= =limZ+Z =0

z—0 Z%_l Z—)OZ—Z3



Continuity

A function fis continuous at a point zo if

lim f(z) exists, (1)
f(z,) exists, (2)
lim f(2) = f(2,) (3) ((3) implies (1)(2))

(|f(z)—f(zo)| <&  whenever |Z—ZO| <0)

o if flafz continuous at zo, then fl _|_f2,f1ref2

also continuous at zo.

So is % if  f,(z,)#0

2



e A polynomial is continuous in the entire plane because of (11), section 12. p.37

e A composition of continuous function is continuous.

g[f@]-glfz)]<e  whenver |f(2)-f(z,)|<r,

whenver ‘Z — ZO‘ <o

e If a function f{z) is continuous and non zero at a point zo, then f(2)#0

throughout some neighborhood of that point.

when f(Zo) ” I6t P ‘f(zzo)‘
|f( D

whenever |z — ZO| <o

f(2)- f(z,)|<

if there is a point z in the |Z _ 5 | atgwhich £(zthen0
\f(zoﬁ contradiction.

£ (zy)] <



From Thm 1
a function f of a complex variable is continuous at a point Z,

iff its component functions u and v are continuous there.

Ex. The function

f(2)=cos(x” — y*)cosh 2xy —isin(x”* — y*)sinh 2xy

1s continuous everywhere in the complex plane since

(1) 2 »are continuous  (polynomial)
X =)
2xy
(i1) cos, sin, cosh, sinh are continuous
(i11) real and imaginary component are continuous

complex function 1s continuous.

. ex _e—x - eix _e—lx
sinh x = sinx = .
21
e +e” et +e™
cosh x = ClgSthematics

= (X5 )



Derivatives

Let f be a function whose domain of deﬂmtmfn(e’cor)taln a neighborhood of a point
Zo. The derivative of f at zo, written , IS
f(Z)_f(%)

f(%):hm.

Z—)ZO Z —_ ZO

provided this limit exists.

fis said to be differentiable at zo.

......
- ~
- ~
- ~
\

let AZ — 7 — ZO | |

A

f'(Zo) = lim f(ZO +Az) - f(ZO) Z(?,x/,,f-“:j \
Az—0 Az Z + Az

let Aw= f(z+Az)— f(2).




Ex1. Suppose f(z)= ~?at any point z

2 2
lim 2 = im G0 =7 024+ As) = 2240 =22
Az—0 Az Az—0 Az Az—0

since 2z + Aza polynomial in Az
dw
f'(z)=—=2z
dz

2. f(z)=|z|

Aw  |z+ A~z (z+Az)(Z+A_z)—ZE .
= = =z+Az+z—
Az Az Az Az

when Az —> OtthAx,()) on the real axis A_Z = Az

Hence if the limit of AW exists, itsvalue= 7 4+ ~ ;

wher\z — () thr@O,Aiy) on the imaginary axis.

Az =—=Az | |imit=7 — 7 ifit exists.

A



since limits are unique,

- - : aw :
sir=7—7 or z=(0If —istoexist.
AW — =
observethat — 3 Az when 7> =)
dw . Az :
. —existsonly atz =0, its value =0

dz

» Example 2 shows that

a function can be differentiable at a certain point but nowhere else in any

neighborhood of that point.

* Re are continuous, partially

| 2 2 2
z =x"+y
Im differentiable at a point.

2
but | ||Zzlm£/ (r)lot be differentiable there.
Z



. f(Z) — |Z| is continuous at each point in the plane since its components are
continuous at each point.

not necessarily

*. continuity - derivative exists.

existence of derivative —sontinuity.

lim[ f(z)— f(z,)] = lim S =) iz =2

zZ—> ZO zZ—> ZO Z —_— ZO Z_)ZO

= 1'(z,)-0=0
~him f(z) = f(z))

zZ—>z,




16. Differentiation Formulas

4 C=0 C :complex constant

dz

iZ=1

dz
% (e (2)]=f (2)
d

= =y n a positive integer.
dz

%: f(2)+F(2)]=f'(z)+F'(z)

/()P = fOF )+ GFE)

when F(z)#0

d {f(Z)} _F@)f'(2)-fEF ()
dz| F(z) [F(Z)]2

(4)



pf - (4)

f(z+A2)F(z+Az)- f(2)F(2)
= (D F(z+Az) - F(2)]+ f(z+ Az) - f(2)]F (z + Az)

f(z+A2)F(z+Az)- f(2)F(2) :f(Z)F(Z+AZ)—F(Z)+f(Z+AZ)—f(Z)
Az Az Az

F(z+Az)

as Az —0 %[ Fl= f(2)F'(2)+ f(2)F(z + Az)

— f(Z)F'(Z) + f'(Z)F(Z) (F continuous at 2)



f has a derivative at 2o
g has a derivative at f{zo)

F(z)=g[f(z)] has a derivative at zo

d ., , , inrule (6
M Fyz) =g Lf ()] () e (©
dW:dew
dz dw dz

pf of (6)

choose a zo at which f(z0) exists.

let wo = f(z0) and assume g’(wo) exists.

Then, there is of wo such that
<é&

|W_ W0|
we can define a function , with

and
d(w,)=0

D(w) = g(ww)} — L)

-g'(w,) when w#w,

lim ®(w) =0, Hence (s continuous at wo

w—w,



(M= gw)—gw,) =[g'w) +PW)](w-w,)  (w—w,|<&)

valid even when ) = w,

since f'(ZO )exists and therefore f is continuous at zo, then we can
have f(z) lies in ‘W_Wo‘<g of W, if ‘Z—ZO‘<5
substitute w by f(z) in (9) when zin ‘Z — Zo‘ <O

(9) becomes

glf(2)]-glf(z)]

zZ—z,

f(Z) f(Zo)

0

=&/ 2]+ PLf (2]}

(O<|Z—ZO|<5)
since f is continuous at zo, (p  is continuous at W, = f(ZO)

(D[f(z)]is continuous at zo, and since (D(WO) =
lim®| f(z)]=0

zZ—>z

so (10)becomes  F(z,) = g'[ £(2,)] (,) as z > 7,

(10)




Cauchy-Riemann Equations
f(zy +Az)— f(2,)
Az
writing  Z, =X, iy,  Az=Ax+iAy

exists.

Suppose that f'(zo) = 1imo
Az—>

Then by Thm. 1

Re f (2, ) =

: f(ZO-I—AZ)—f(ZO)
L] - E)

Im[f'(z,)]= lim P AT A /Y R

(Ax,Ay)—(0,0) Az

where
Fz+82) = f(z) _ s+ Ax Yo+ AN -u(xp30) )
Az Ax +iAy
" i[v(x, +Ax, y, + Ay) —v(xy, ¥, )]
Ax+iAy




Let (Ax,Ajtgnd to (0,0) horizontally through (Aixe0) Ay

0

Re[ f(z,)] = lim “Cot A% Y0) =u(x, Vo)

Ax
Im[ £ '(z,)] = gg}) v(x, +Ax,)2;—v(xo,y0)
S (20) = u, (x5 vo) + v, (X, Vo) (6)
Let (Ax,Aydend to (0,0) vertically thru (0i,.8)) Axhe
F(z) = (u(xo,yo +?z))/—u(x0,yo) N i[v(xy, +iAA);)—v(xO,yO)])
=, (%9, ¥o) =it (X, ¥,) (7)
=—iu, +v,
(6)=(7)
”x(xoaJ/o):Vy(xoa)/o) )

“y(xoaJ/o) =, (X, )

Cauchy-Riemann Equations.



Thm : suppose f(2)=u(x,y)+iv(x,y)
1'(z9¢ists at a point Z, = X, + 1y,

Then :
u.,u,,v,v, exist at (x,,),)

andu, =v, u,=-v,; also f'(z)=u +iv,

Exl  f(z)=z"=x"—y" +i2xy

u, =2x v. =2y
u,=-2y v, =2x
U . =v,, U, ==V,

fl(z)=2x+i2y=2(x+iy)=2z
Cauchy-Riemann equations are Necessary conditions for the existence of

the derivative of a function fat zo.

~Can be used to locate points at which fdoes not have a derivative.



2
”

Ex 2. f(Z) = |Z
u(x,y)=x"+y>  v(x,y)=0
u, = 2x Ve = 0 u,#v,, /'(2) does not exist
0

u,=2y v, =

at any nonzero point.

The above Thm does not ensure the existence of f’(zo)
(say)



Sufficient Conditions For Differentiability

f(zy) exist —Du. =v, u =-v
but not | |
e
Thm.

Let f(z)=u(x,y)+iv(x,y) be defined throughout some  n€ighborhood of
a point Z, = X, -|-iy0

suppose .y, ‘/exist everywhere in the neighborhood and

x o y? b y

are

at .
(%5 Yo)
Thenif u =v, u,=-v, at(x,),)

= f'(z,) exists.



pf :let Az=Ax+iAy, where 0< |AZ| <&
Aw= f(z,+A2)— f(z,)
Thus Aw=Au+iAv <<u(z,+Az)—u(z,))+i[v(z, +Az)—v(z,)]
Whete  Au = u(x, + Ax, y, + Ay) —u(xy, y,)
Av =v(X, + Ax, y, + Ay) = v(xy, ¥, )
) Now in view of the continuity of the first-order partial derivatives of u and v at the

point (X5 Vo)

Au = ”(xoayo)+ux(xoayo)m+”y(xoayo)Ay 'H/lxy(xoayo)AXAy
sz
+t,., (X, yo)z—!

_u(xmyo) +...

= 1, (%> o)A + 10, (%o 7 AY & (Ax) + (A’




Av = vx(xo,yO)Ax+Vy(x0,yO)Ay+82\/(AX)2 +(Ay)’

&, = 0,as (Ax,Ay) —(0,0)
«— whereg, and & tend to 0 adAx,Ay) > (0,0) in the

Aw = Au +iAv
-0l . A=z
= above (3)p ane
assuming that the Cauchy-Riemann equations are satisfied at (xo\;vyoc}an replace
_ ind3), and divide thru b
u, by —v., and v, B3 \/ y Az
OBt Ay (ax) +(ay)
E:ux(xoayo)+ivx(xoayo)+(51+i52) Az (4)

but  \J(Ax) +(Av) =|Az]

J(ax) +(a)|

Az

SO

also g + ig:;nds to 0, as (Ax, Ay) —> (0,0)
The last term in(4) tends to 0 as Az >0

. Aw
-. The limit of Ew exists, and £'(z,) =u.(x,, v,)+iv.(X,, Vo).



Bl f(z)=e"(cosy+isiny)

Ex 2.

u(x,y)=e cosy

v(x,y)=e siny

— — everywhere, and continuous.
u.=v, U, Vv, y :

— f'(z) exists everywhere, and

f'(z)=u_+iv, =e'(cosy+isiny)

2
f(2)=lz|
u(x,y)=x"+y° u,=2x u,=2y
v(x,y)=0 v,=0 v =0

has a derivative at z=0.
7(0)=0+i0

can not have derivative at any nonzero point.



Polar Coordinates
X=rcosf y=rsiné
z=x+iy=re’ (z#0)

Suppose that U uy V. EX|st everywhere in some neighborhood of a given non-

zero point zo and are contlnuous at that point.

u,,u,,v., Vealso have these properties, and ( by chain rule )

Ou Ou 8x ou Oy
or  Ox 8r oy Or

Ou Ou Ox au oy
00 ox 86’ oy 06

u, =u,cosd+u, sinf (2)

Uy =—u,rsin@+u rcostd

Similarly,

v, =v cosf+v sinf (3)

v, =—v.rsin@+v rcost



It wu=v,u =-v

X

r

Vv, =—u,cosf+u, sinod

Vg =u,rsiné+u rcoso

from (2) (5), u, =—yv, at Z,
r
1
_uﬁ — _vr
r

Thm. p53...

(6)

)



(] _ .
f(zy)=u_+iv,
=7
M,,ZMXCOS@+MySil’1(9 VFZVXCOSH-I-VySln@
2 . = — 1
u, cos@=u, cos’ 6 +u, sinfcosd u,cosd+u, sind
v, sin @ =—u, cos@sin @ +u, sin’ &

U, cos@+v. sinld=u_

u,=v, cosd—v sind v, =v . cosfd+v sinf

u, sin@ =v, cos@sinf—v sin’@  cos@v, =v, cos” & +v,sindcosd

v.cos@—u sinb=v_

" f'(zy)=u, cos@+v,sin@+i(v,cosd—u,sinb)
=(cos@—ismbO)(u.+1iv,)
e(u +iv) (7)



1

1
Ex : Consider f(z2)=—=—

z re
1 l .
u(r,0)=—cosé v(r,0)=——smn 6@
r r
1 1 .
u, = —— cost v, =—sinf
r r
1 . 1
U, =——sind v, =——cost
r r
1 1 :
—>u, =-v,, —u,=-—y, atanynon-zero point z =re
r r
f' exists
f'—e‘ie(—icosﬁ+isin9)
- 2 2
r r
Loy -0 1 o 1
=—(eT)e " =-—Fe T =——

r r A



