DERIVATIVE OF ANALYTIC FUNCTION

Derivatives of Analytic Functions z=x+iy

Let f(z) be analytic around z, then

$$\frac{df(x)}{dx} = g(x) \qquad \rightarrow \qquad \frac{df(z)}{dz} = g(z)$$

Proof

$$f(z)$$
 analytic $\rightarrow f'(z) = \frac{\partial f(x+iy)}{\partial x} = \frac{df(x)}{dx}\Big|_{x=z} = g(z)$

E.g.
$$\frac{dx^n}{dx} = n \ x^{n-1} \longrightarrow \frac{dz^n}{dz} = n \ z^{n-1}$$

... Analytic functions can be defined by Taylor series of the same coefficients as their real counterparts.

Derivative of Logarithm

CRCs
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

$$r = \sqrt{x^2 + y^2}$$
 $\theta = \tan^{-1} \frac{y}{x}$

$$\frac{d \ln z}{d z} = \frac{1}{z}$$

for z within each branch.

$$\ln z = \ln r + i \left(\theta + 2\pi n\right) = u + iv \qquad \rightarrow \qquad \begin{array}{c} u = \ln r \\ v = \theta + 2\pi n \end{array}$$

$$\frac{\partial u}{\partial x} = \frac{1}{r} \frac{\partial r}{\partial x} = \frac{x}{r^2} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = \frac{1}{r} \frac{\partial r}{\partial y} = \frac{y}{r^2} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial \theta}{\partial y} = \left(1 + \frac{y^2}{x^2}\right)^{-1} \frac{1}{x} = \frac{x}{r^2}$$

$$\frac{\partial \theta}{\partial x} = \left(1 + \frac{y^2}{x^2}\right)^{-1} \left(-\frac{y}{x^2}\right) = -\frac{y}{r^2}$$

 \rightarrow ln z is analytic within each branch.

$$\therefore \frac{d \ln z}{dz} = \frac{\partial \ln z}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{x}{r^2} - i \frac{y}{r^2} = \frac{1}{x + iy} = \frac{1}{z}$$

$$r^2 = z z^*$$

QED

• Consider derivatives of complex-valued functions w of real variable t

$$w(t) = u(t) + iv(t)$$

where the function u and v are real-valued functions of t. The derivative

$$w'(t), or \frac{d}{dt}w(t)$$

of the function w(t) at a point t is defined as

$$w'(t) = u'(t) + iv'(t)$$

Properties

For any complex constant $z_0 = x_0 + iy_0$,

$$\frac{d}{dt}[z_0w(t)] = [(x_0 + iy_0)(u + iv)]' = [(x_0u - y_0v) + i(y_0u + x_0v)]'$$

$$= (x_0u - y_0v)' + i(y_0u + x_0v)'$$

$$= (x_0u' - y_0v') + i(y_0u' + x_0v')$$

$$= (x_0 + iy_0)(u' + iv') = z_0w'(t)$$

Properties

$$\frac{d}{dt}e^{z_0t} = z_0e^{z_0t}$$

where $z_0 = x_0 + iy_0$. We write $e^{z_0 t} = e^{(x_0 + iy_0)t} = e^{x_0 t} \cos y_0 t + i e^{x_0 t} \sin y_0 t$ $\frac{d}{dt} e^{z_0 t} = (e^{x_0 t} \cos y_0 t)' + i(e^{x_0 t} \sin y_0 t)'$

Similar rules from calculus and some simple algebra then lead us to the expression

$$\frac{d}{dt}e^{z_0t} = (x_0 + iy_0)e^{(x_0 + iy_0)t} = z_0e^{z_0t}$$

Example

Suppose that the *real function* f(t) is continuous on an interval $a \le t \le b$, if f'(t) exists when a < t < b, the mean value theorem for derivatives tells us that there is a number ζ in the interval $a < \zeta < b$ such that

$$f'(\varsigma) = \frac{f(b) - f(a)}{b - a}$$

• Example (Cont')

The mean value theorem no longer applies for some *complex functions*. For instance, the function

$$w(t) = e^{it}$$

on the interval $0 \le t \le 2\pi$.

Please note that

$$|w'(t)|=|ie^{it}|=1$$

And this means that the derivative w'(t) is never zero, while

$$w(2\pi) - w(0) = 0$$
 \longrightarrow $w'(\zeta) \neq \frac{w(2\pi) - w(0)}{2\pi - 0} = 0, \forall \zeta \in (0, 2\pi)$

Note: not every rules from calculus holds for complex functions