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SingularitiesSingularities  
• We have seen that the function w = z3 is 

analytic everywhere except at z =  whilst 
the function w = z-1 is analytic everywhere 
except at z = 0. 

• In fact, NO function except a constant is 
analytic throughout the complex plane, and 
every function except of a complex variable 
has one or more points in the z plane where 
it ceases to be analytic. 

• These points are called “singularities”. 
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Types of singularitiesTypes of singularities  
 

• Three types of singularities exist: 
o Poles or unessential singularities  

• “single-valued” functions 

o Essential singularities 

• “single-valued” functions 

o Branch points 

• “multivalued” functions 

Engineering Mathematics III 



Poles or unessential Poles or unessential 
singularitiessingularities  

• A pole is a point in the complex plane at 

which the value of a function becomes 

infinite. 

• For example, w = z-1 is infinite at z = 0, and 

we say that the function w = z-1 has a pole 

at the origin. 

• A pole has an “order”: 

o The pole in w = z-1 is first order. 

o The pole in w = z-2 is second order. 

Engineering Mathematics III 



The order of a poleThe order of a pole  

If w = f(z) becomes infinite at the point z = a, we define: 

)()()( zfazzg n where n is an integer. 

If it is possible to find a finite value of n which makes g(z) analytic at z = a, 
then, the pole of f(z) has been “removed” in forming g(z). 
The order of the pole is defined as the minimum integer value of n for which
g(z) is analytic at z = a. 
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Essential singularitiesEssential singularities  
• Certain functions of complex variables have an infinite 

number of terms which all approach infinity as the 

complex variable approaches a specific value. These 

could be thought of as poles of infinite order, but as the 

singularity cannot be removed by multiplying the 

function by a finite factor, they cannot be poles. 

• This type of sigularity is called an essential singularity and 

is portrayed by functions which can be expanded in a 

descending power series of the variable. 

• Example: e1/z has an essential sigularity at z = 0. 
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Essential singularities can be distinguished from poles by the fact 
that 
they cannot be removed by multiplying by a factor of finite value. 

Example: 
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We try to remove the singularity of the function at the origin by 
multiplying zp 
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It consists of a finite 
number of positive powers 
of z, followed by an infinite 
number of negative powers 
of z. 

All terms are positive 

 wzzAs p,0

It is impossible to find a finite value of p which will 
remove the singularity in e1/z at the origin. 
The singularity is “essential”. Engineering Mathematics III 



Branch pointsBranch points  
• The singularities described above arise from 

the non-analytic behaviour of single-valued 

functions. 

• However, multi-valued functions frequently 

arise in the solution of engineering problems. 

• For example:  
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For any value of z represented by a point on the circumference of the circle in the 
z plane, there will be two corresponding values of w represented by points in the 
w plane. 
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Cauchy-Riemann conditions in polar coordinates 

when 0    2 

A given range, where the function 
is single valued: the “branch” 

The particular value of z at which 
the function becomes infinite or 
zero 
is called the “branch point”. 
The origin is the branch point here. 
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Branch pointBranch point  
• A function is only multi-valued around 

closed contours which enclose the branch 
point. 

 

• It is only necessary to eliminate such 
contours and the function will become 
single valued. 
o The simplest way of doing this is to erect a barrier 

from the branch point to infinity and not allow 
any curve to cross the barrier. 

o The function becomes single valued and analytic for all permitted curves. 
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Barrier Barrier --  branch cutbranch cut  
• The barrier must start from the branch point but 

it can go to infinity in any direction in the z 
plane, and may be either curved or straight. 

• In most normal applications, the barrier is drawn 

along the negative real axis. 

o The branch is termed the “principle branch”. 

o The barrier is termed the “branch cut”. 

o For the example given in the previous slide, the region, 

the barrier confines the function to the region in 

which the argument of z is within the range - <  < . 
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 Zeros and Poles of order m 

Consider a function f that is analytic at a point z0.  

(From Sec. 40). 
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Example. 
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Example. 
0

1( )    has a pole of order 2 at 0
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Corollary: Let two functions p and q be analytic at a point z0. 
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Example. cos( ) cot
sin

( ) cos  sin   both entire
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The singularities of f(z) occur at zeros of q, or 
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try tan z 


