Singularities, Zeros And Poles

Singularities

- We have seen that the function $w = z^3$ is analytic everywhere except at z = z whilst the function $w = z^{-1}$ is analytic everywhere except at z = 0.
- In fact, NO function except a constant is analytic throughout the complex plane, and every function except of a complex variable has one or more points in the z plane where it ceases to be analytic.
- These points are called "singularities".

Types of singularities

- Three types of singularities exist:
 - Poles or unessential singularities
 - "single-valued" functions
 - Essential singularities
 - "single-valued" functions
 - Branch points
 - "multivalued" functions

Poles or unessential singularities

- A pole is a point in the complex plane at which the value of a function becomes infinite.
- For example, $w = z^{-1}$ is infinite at z = 0, and we say that the function $w = z^{-1}$ has a pole at the origin.
- A pole has an "order":
 - o The pole in $w = z^{-1}$ is first order.
 - \circ The pole in w = z^{-2} is second order.

The order of a pole

If w = f(z) becomes infinite at the point z = a, we define:

$$g(z) = (z-a)^n f(z)$$
 where *n* is an integer.

If it is possible to find a finite value of n which makes g(z) analytic at z = a, then, the pole of f(z) has been "removed" in forming g(z).

The order of the pole is defined as the minimum integer value of n for which g(z) is analytic at z = a.

$$w = \frac{1}{z}$$
 pole, (a=0)

$$(z)^{n} \frac{1}{z} = g(z)$$
 Order = 1

Engineering Mathematics III

Essential singularities

- Certain functions of complex variables have an infinite number of terms which all approach infinity as the complex variable approaches a specific value. These could be thought of as poles of infinite order, but as the singularity cannot be removed by multiplying the function by a finite factor, they cannot be poles.
- This type of sigularity is called an essential singularity and is portrayed by functions which can be expanded in a descending power series of the variable.
- Example: $e^{1/z}$ has an essential sigularity at z = 0.

Essential singularities can be distinguished from poles by the fact that

they cannot be removed by multiplying by a factor of finite value.

Example:

$$w = e^{1/2} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + ... + \frac{1}{n!z^n} + ...$$
 infinite at the origin

We try to remove the singularity of the function at the origin by multiplying z^p

$$z^{p}w = z^{p} + z^{p-1} + \frac{z^{p-2}}{2!} + \dots + \frac{z^{p-n}}{n!} + \dots$$
 It consists of a finite number of positive powers of z, followed by an infinite

All terms are positive

As
$$z \to 0$$
, $z^p w \to \infty$

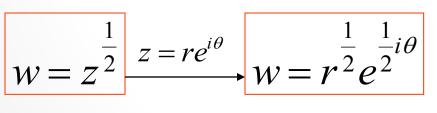
of z, followed by an infinite number of negative powers of z.

It is impossible to find a finite value of *p* which will remove the singularity in $e^{1/z}$ at the origin.

The singularity is "essential".

Branch points

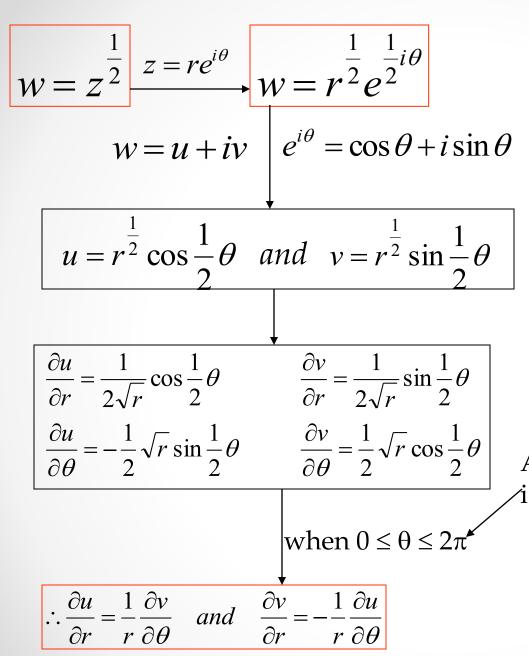
- The singularities described above arise from the non-analytic behaviour of single-valued functions.
- However, multi-valued functions frequently arise in the solution of engineering problems.
- For example:



w

For any value of z represented by a point on the circumference of the circle in the z plane, there will be two corresponding values of w represented by points in the w plane.

Engineering Mathematics III



A given range, where the function is single valued: the "branch"

The particular value of z at which the function becomes infinite or zero

is called the "branch point".

Cauchy-Riemann conditions in polar coordinates Engine Mathematics III

Branch point

- A function is only multi-valued around closed contours which enclose the branch point.
- It is only necessary to eliminate such contours and the function will become single valued.
 - The simplest way of doing this is to erect a barrier from the branch point to infinity and not allow any curve to cross the barrier.
 - o The function becomes single valued and analytic for all permitted curves.

Barrier - branch cut

- The barrier must start from the branch point but it can go to infinity in any direction in the z plane, and may be either curved or straight.
- In most normal applications, the barrier is drawn along the negative real axis.
 - o The branch is termed the "principle branch"
 - o The barrier is termed the "branch cut".
 - o For the example given in the previous slide, the region, the barrier confines the function to the region in which the argument of z is within the range $-\pi < \theta < \pi$.

Zeros and Poles of order m

Consider a function f that is analytic at a point z_0 .

(From Sec. 40).
$$f^{(n)}(z)$$
 $(n=1, 2,)$ exist at z_0

If $f(z_0)=0$,
 $f'(z_0)=0$
 \vdots
 $f^{(m-1)}(z_0)=0$
 $f^{(m)}(z_0)\neq 0$

Then f is said to have a zero of order m at z_0 .

Lemma:
$$f(z)=(z-z_0)^m g(z)$$
analytic and non-zero at z_0 .

Example.
$$f(z)=z(e^{z}-1)$$

= $z^{2}(1+\frac{z}{2!}+\frac{z^{2}}{3!}+....)$

has a zero of order m=2 at $z_0=0$

$$g(z) = \begin{cases} (e^z - 1)/z & \text{when } z \neq 0 \\ 1 & \text{when } z = 0 \end{cases}$$
 is analytic at $z = 0$.

Thm. Functions p and q are analytic at z_0 , and $p(z_0) \neq 0$.

If q has a zero of order m at z_0 , then

$$\frac{p(z)}{q(z)}$$
 has a pole of order m there.

$$q(z) = (z - z_0)^m g(z)$$

analytic and non zero

$$\frac{p(z)}{q(z)} = \frac{p(z)/g(z)}{(z-z_0)^m}$$

Example.
$$f(z) = \frac{1}{z(e^z - 1)}$$
 has a pole of order 2 at $z_0 = 0$

Corollary: Let two functions p and q be analytic at a point z_0 .

If
$$p(z_0) \neq 0$$
, $q(z_0) = 0$, and $q'(z_0) \neq 0$

then z_0 is a simple pole of $\frac{p(z)}{q(z)}$ and

$$\operatorname{Re}_{z=z_0}^{s} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

 $q(z)=(z-z_0)$ g(z), g(z) is analytic and non zero at z_0

$$\frac{p(z)}{q(z)} = \frac{p(z)/g(z)}{z-z_0}$$

Form Theorem in sec 56, $\operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{g(z_0)}$

But
$$g(z_0) = q'(z_0)$$
 $= \frac{p(z_0)}{q'(z_0)}$

Example.

$$f(z) = \cot z = \frac{\cos z}{\sin z}$$

$$p(z) = \cos z, \ q(z) = \sin z \text{ both entire}$$

The singularities of f(z) occur at zeros of q, or

$$z=n\pi$$
 (n=0, ±1, ±2,...)

Since
$$p(n\pi) = (-1)^n \neq 0$$
, $q(n\pi) = 0$, and $q'(n\pi) = (-1)^n \neq 0$
each singular point $z = n\pi$ of f is a simple pole,
with residue $B_n = \frac{p(n\pi)}{q'(n\pi)} = \frac{(-1)^n}{(-1)^n} = 1$

try tan z