Polynomials and Exponential curve

Engineering Mathematics III

Error Quantification of Linear Regression

▶ Total sum of the squares around the mean for the dependent variable, y, is \mathbf{S}_t

$$S_t = \sum (y_i - \overline{y})^2$$

ightharpoonup Sum of the squares of residuals around the regression line is $\mathbf{S_r}$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_o - a_i x_i)^2$$

Engineering Mathematics II

Linear Quantification of Linear Regression

 S_t - S_r quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.

$$r^2 = \frac{S_t - S_r}{S_t}$$

*r*²: coefficient of determination

r: correlation coefficient

For a perfect fit:

- S_r= 0 and $r = r^2 = 1$, signifying that the line explains 100 percent of the variability of the data.
- For $r = r^2 = 0$, $S_r = S_t$, the fit represents no improvement.

Engineering Mathematics III

Least Squares Fit of a Straight Line: Example

Fit a straight line to the x and y values in the following Table

Xi	$\mathbf{y_i}$	x _i y _i	X_i^2
1	0.5	0.5	1
2	2.5	5	4
3	2	6	9
4	4	16	16
5	3.5	17.5	25
6	6	36	36
7	5.5	38.5	49
28	24	119.5	140

$$\sum x_i = 28^{x_i y_i} \sum_{i=119.5}^{119.5} y_i = 24.6$$

$$\sum x_i^2 = 140$$

$$\bar{x} = \frac{28}{7} = 4$$

$$\bar{y} = \frac{24}{7} = 3.428571$$

Least Squares Fit of a Straight Line: Example (cont'd)

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$= \frac{7 \times 119.5 - 28 \times 24}{7 \times 140 - 28^{2}} = 0.8392857$$

$$a_{0} = \bar{y} - a_{1}\bar{x}$$

$$= 3.428571 - 0.8392857 \times 4 = 0.07142857$$

$$Y = 0.07142857 + 0.8392857$$
 x

Least Squares Fit of a Straight Line: Example (Error Analysis)

				, A series of the series of th
\mathbf{x}_{i}	y_i	$(y_i - \overline{y})^2$	$e_i^2 = (y_i - y_i)$	$(-y)^2$
1	0.5	8.5765	0.1687	$S_t = \sum (y_i - \bar{y})^2 = 22\frac{\bar{s}}{\bar{s}}$ 7143
2	2.5	0.8622	0.5625	$\sum_{i=1}^{n} 2^{i} = 2^{n}$
3	2.0	2.0408	0.3473	$S_r = \sum e_i^2 = 2.99$
4	4.0	0.3265	0.3265	
5	3.5	0.0051	0.5896	- $S - S$
6	6.0	6.6122	0.7972^{r}	$=\sqrt{r^2} = \sqrt{r^{2868}} = 0.935 C = 0.868$
7	5.5	4.2908	0.1993	\mathcal{O}_t
28	24.0	22.7143	2.9911	

Least Squares Fit of a Straight Line: Example (Error Analysis)

•The standard deviation (quantifies the spread around the mean)

$$S_y = \sqrt{\frac{S_t}{n-1}} = \sqrt{\frac{22.7143}{7-1}} = 1.9457$$

•The standard error of estimate (quantifies the spread around the regression line)

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} = \sqrt{\frac{2.9911}{7-2}} = 0.7735$$

Because $S_{y/x} < S_y$, the linear regression model has good fitness

Algorithm for linear regression

```
SUB Regress(x, y, n, al, a0, syx, r2)
 sumx = 0: sumxy = 0: st = 0
  sumy = 0: sumx2 = 0: sr = 0
 D0 i = 1. n
   sumx = sumx + x_i
   sumy = sumy + y_i
    sumxy = sumxy + x_i * y_i
   sumx2 = sumx2 + x_i *x_i
 END DO
 xm = sum x/n
 ym = sum y/n
 a1 = (n*sumxy - sumx*sumy)/(n*sumx2 - sumx*sumx)
 a0 = ym - a1*xm
 D0 \ i = 1, \ n
   st = st + (y_i - ym)^2
   sr = sr + (y_i - a1*x_i - a0)^2
 FND DO
 syx = (sr/(n-2))^{0.5}
 r2 = (st - sr)/st
```

Linearization of Nonlinear Relationships

- The relationship between the dependent and independent variables is linear.
- However, a few types of nonlinear functions can be transformed into linear regression problems.
- The exponential equation.
- The power equation.
- The saturation-growth-rate equation.

Linearization of Nonlinear Relationships

1. The exponential equation.

$$\frac{\ln y}{\ln a_1} + \frac{b_1 x}{\ln a_2} + \frac{b_2 x}{\ln a_3} + \frac{b_3 x}{\ln$$

Linearization of Nonlinear Relationships 2. The power equation

$$\log y = \log a_2 + b_2 \log x$$

$$y^* = Q_0 + Q_1$$

$$x^*$$

Linearization of Nonlinear Relationships 3. The saturation-growth-rate equation

$$\frac{1}{y} = \frac{1}{a_3} + \frac{b_3}{a_3} \left(\frac{1}{x}\right)$$

$$y^* = 1/y$$
 $a_0 = 1/a_3$
 $a_1 = b_3/a_3$
 $x^* = 1/x$

Example

Fit the following Equation:

$$y = a_2 x^{b_2}$$

to the data in the following table:

X _i	y _i	$X^* = \log x_i$	Y*=logy _i
1	0.5	0	-0.301
2	1.7		0.226
3	3.4		0.534
4	5.7		0.753
5	8.4	0.699	0.922
15	19.7	2.079	2.141

Engineering Mathematics III

Example

Xi	Yi	X* _i =Log(X)	Y* _i =Log(Y)	X*Y*	X*^2
1	0.5	0.0000	-0.3010	0.0000	0.0000
2	1.7	0.3010	0.2304	0.0694	0.0906
3	3.4	0.4771	0.5315	0.2536	0.2276
4	5.7	0.6021	0.7559	0.4551	0.3625
5	8.4	0.6990	0.9243	0.6460	0.4886
15	19.700	2.079	2.141	1.424	1.169

Sum

$$\begin{cases} a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = \frac{5 \times 1.424 - 2.079 \times 2.141}{5 \times 1.169 - 2.079^2} = 1.75 \\ a_0 = \overline{y} - a_1 \overline{x} = 0.4282 - 1.75 \times 0.41584 = -0.334 \end{cases}$$

Linearization of Nonlinear Functions: Example

 $\log y = -0.334 + 1.75 \log x$

$$y = 0.46x^{1.75}$$

- Some engineering data is poorly represented by a straight line.
- For these cases a curve is better suited to fit the data.
- The least squares method can readily be extended to fit the data to higher order polynomials.

Engineering Mathematics

A parabola is preferable

A 2nd order polynomial (quadratic) is defined by: $y = a_o + a_1x + a_2x^2 + e$

The residuals between the model and the data: $e_i = y_i - a_o - a_1 x_i - a_2 x_i^2$

▶ The sum of squares of the residual:

$$S_r = \sum e_i^2 = \sum (y_i - a_o - a_1 x_i - a_2 x_i^2)^2$$

$$\frac{\partial S_r}{\partial a_o} = -2\sum (y_i - a_o - a_I x_i - a_2 x_i^2) = 0$$

$$\frac{\partial S_r}{\partial a_i} = -2\sum_i (y_i - a_o - a_i x_i - a_2 x_i^2) x_i = 0$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum (y_i - a_o - a_I x_i - a_2 x_i^2) x_i^2 = 0$$

$$\sum y_{i} = n \cdot a_{o} + a_{1} \sum x_{i} + a_{2} \sum x_{i}^{2}$$

$$\sum x_{i} y_{i} = a_{o} \sum x_{i} + a_{1} \sum x_{i}^{2} + a_{2} \sum x_{i}^{3}$$

$$\sum x_{i}^{2} y_{i} = a_{o} \sum x_{i}^{2} + a_{1} \sum x_{i}^{3} + a_{2} \sum x_{i}^{4}$$

3 linear equations with 3 unknowns (a_0, a_1, a_2) , can be solved

A system of 3x3 equations needs to be solved to determine the coefficients of the polynomial.

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{bmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \end{pmatrix} = \begin{cases} \sum y_{i} \\ \sum x_{i}y_{i} \\ \sum x_{i}^{2}y_{i} \end{cases}$$

The standard error & the coefficient of determination

$$S_{y/x} = \sqrt{\frac{S_r}{n-3}}$$

$$r^2 = \frac{S_t - S_r}{S_t}$$

General:

The mth-order polynomial:

$$y = a_o + a_1 x + a_2 x^2 + \dots + a_m x^m + e$$

Engineering Mathematics

- A system of (m+1)x(m+1) linear equations must be solved for determining the coefficients of the mth-order polynomial.
- The standard error:

$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

The coefficient of determination:

$$r^2 = \frac{S_t - S_r}{S_t}$$

Polynomial Regression- Example

Fit a second order polynomial to data:

x_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$	$\sum x_i = 15$
0	2.1	0	0	0	0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1	7.7		1	1	7.7	7.7	$\sum_{\sum x_i^3 = 225} y_i = 15$
2	13.6	4	8	16	27.2	54.4	$\sum x_i^2 = 55$
3	27.2	9	27	81	81.6	244.8	
4	40.9	16	64	256	163.6	654.4	
5	61.1	25	125	625	305.5	1527.5	
15	152.6	55	225	979	585.6	2489	$\sum x_i^4 = 9$
							$\sum_{x} x = 1$

$$\bar{x} = \frac{15}{6} = 2.5, \quad \bar{y} = \frac{152.6}{6} = 25.433$$

$$\sum x_i = 15 \text{ matrix}$$

$$\sum x_i^3 = 225 \quad y_i = 1525.6$$

$$\sum x_i^2 = 55 \text{ matrix}$$

$$\sum x_i^4 = 979$$

$$\sum x_i y_i = 585.6$$

$$\sum x_i^2 y_i = 2488.8$$

Polynomial Regression- Example (cont'd)

▶ The system of simultaneous linear equations:

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix}$$

$$a_0 = 2.47857$$
, $a_1 = 2.35929$, $a_2 = 1.86071$
 $y = 2.47857 + 2.35929 x + 1.86071 x^2$

$$S_t = \sum (y_i - \bar{y})^2 = 2513.39$$
 $S_r = \sum e_i^2 = 3.74657$

Polynomial Regression- Example

x_i	y_i	y _{model}	e_i^2	(y _i -y`) ²
0	2.1	2.4786	0.14332	544.42889
1	7.7	6.6986	1.00286	314.45929
2	13.6	14.64	1.08158	140.01989
3	27.2	26.303	0.80491	3.12229
4	40.9	41.687	0.61951	239.22809
5	61.1	60.793	0.09439	1272.13489
15	152.6		3.74657	2513.39333

The standard error of estimate:

$$s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$$

•The coefficient of determination:

$$r^2 = \frac{2513.39 - 3.74657}{2513.39} = 0.99851, \quad r = \sqrt{r^2} = 0.99925$$

