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Least Squares Regression 

Linear Regression 

• Fitting a straight line to a set of paired observations: (x1, y1), (x2, 
y2),…,(xn, yn). 

 y=a0+a1x+e 

 a1- slope 

 a0- intercept 

 e- error, or residual, between the model and the observations 
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Criteria for a “Best” Fit/ 

• Minimize the sum of the residual errors for all 
available data: 

 

  

 n = total number of points 

• However, this is an inadequate criterion, so is the sum 
of the absolute values 
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Figure  
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• Best strategy is to minimize the sum of the squares of 
the residuals between the measured y and the y 
calculated with the linear model: 

 

 

 

• Yields a unique line for a given set of data. 
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Least-Squares Fit of a Straight Line/ 
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Figure : 



Engineering Mathematics III 

Figure :  



Engineering Mathematics III 

Figure: 



“Goodness” of our fit/ 

If 

• Total sum of the squares around the mean for the 
dependent variable, y, is St 

• Sum of the squares of residuals around the regression 
line is Sr 

• St-Sr quantifies the improvement or error reduction 
due to describing data in terms of a straight line rather 
than as an average value. 
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r2-coefficient of determination 

Sqrt(r2) – correlation coefficient Engineering Mathematics III 
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• For a perfect fit 

 Sr=0 and r=r2=1, signifying that the line explains 100 
percent of the variability of the data. 

• For r=r2=0, Sr=St, the fit represents no improvement. 
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Polynomial Regression 

• Some engineering data is poorly represented by a straight line. For 
these cases a curve is better suited to fit the data. The least squares 
method can readily be extended to fit the data to higher order 
polynomials . 
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General Linear Least Squares 
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Minimized by taking its partial 

derivative w.r.t. each of the 

coefficients and setting the 

resulting equation equal to zero 


