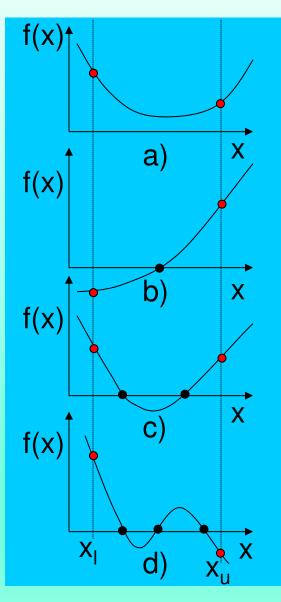
Rate of convergence

Two Fundamental Approaches

- 1. Bracketing or Closed Methods
 - Bisection Method
 - False-position Method (Regula falsi).
- 2. Open Methods
 - Newton-Raphson Method
 - Secant Method
 - Fixed point Methods

Bracketing Methods



In Figure a) we have the case of $f(x_l)$ and $f(x_u)$ with the same sign, and there is no root in the interval (x_l, x_u) .

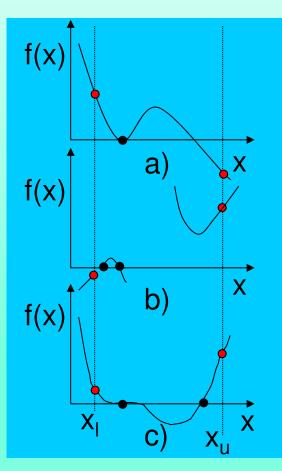
In Figure b) we have the case of $f(x_1)$ and $f(x_u)$ With different sign, and there is a root in the interval (x_1, x_u) .

In Figure c) we have the case of $f(x_1)$ and $f(x_u)$ with the same sign, and there are two roots.

In Figure d) we have the case of $f(x_l)$ and $f(x_u)$ with different sign, and there is an odd number of roots.

Bracketing Methods

• Though the cases above are generally valid, there are cases in which they do not hold.

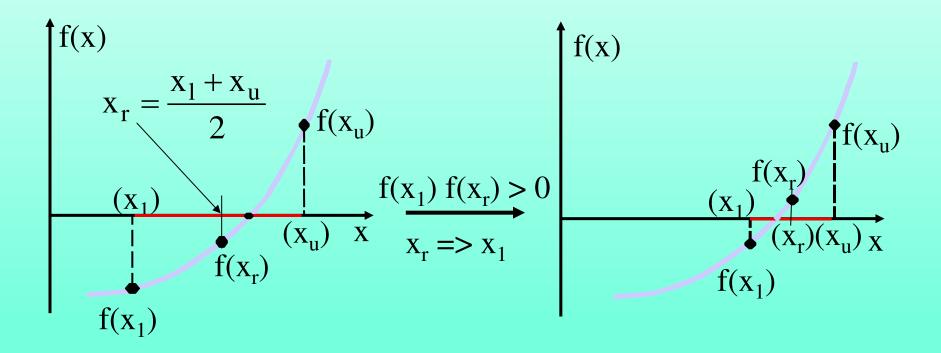


In Figure a) we have the case of $f(x_1)$ and $f(x_u)$ with different sign, but there is a double root.

In Figure b) We have the case of $f(x_1)$ and $f(x_u)$ With different sign, but there are two discontinuities.

In Figure c) we have the case of $f(x_1)$ and $f(x_u)$ with the same sign, but there is a multiple root. **Bracketing Methods (Bisection method)**

Bisection Method



Bracketing Methods (Bisection method)

Bisection Method

Advantages:

- 1. Simple
- 2. Estimate of maximum error:
- 3. Convergence guaranteed

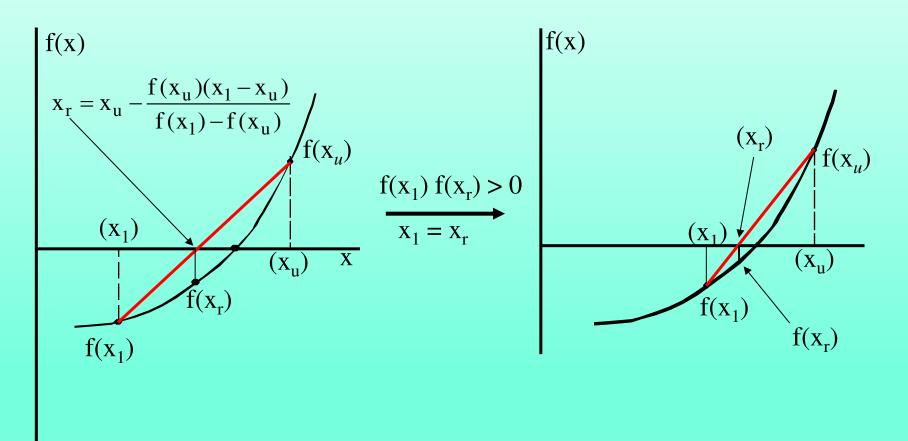
$$|\mathbf{E}_{\max}| \le \left| \frac{\mathbf{x}_1 - \mathbf{x}_u}{2} \right|$$
$$|\mathbf{E}_{\max}^{i+1}| = 0.5 |\mathbf{E}_{\max}^i|$$

Disadvantages:

- 1. Slow
- 2. Requires two good initial estimates which define an interval around root:
 - use graph of function,
 - incremental search, or
 - trial & error

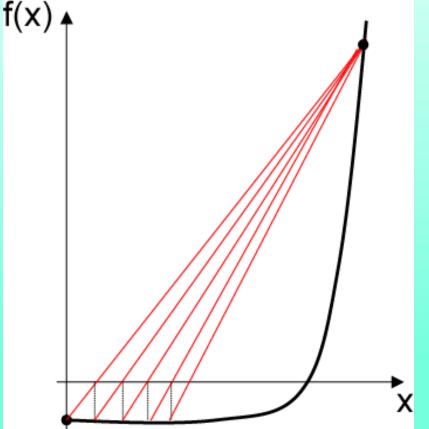
Bracketing Methods (False-position Method)

False-position Method



Bracketing Methods (False-position Method)

There are some cases in which the false position method is very slow, and the bisection method gives a faster solution. f(x)



Bracketing Methods (False-position Method)

Summary of False-Position Method:

Advantages:

- 1. Simple
- 2. Brackets the Root

Disadvantages:

- 1. Can be VERY slow
- 2. Like Bisection, need an initial interval around the root.

Open Methods

Roots of Equations - Open Methods

Characteristics:

- 1. Initial estimates need not bracket the root
- 2. Generally converge faster
- 3. **NOT** guaranteed to converge

Open Methods Considered:

- Fixed-point Methods
- Newton-Raphson Iteration
- Secant Method

Roots of Equations

Two Fundamental Approaches

- 1. Bracketing or Closed Methods
 - Bisection Method
 - False-position Method
- 2. Open Methods
 - One Point Iteration
 - Newton-Raphson Iteration
 - → Secant Method

Open Methods (Newton-Raphson Method)

Newton-Raphson Method:

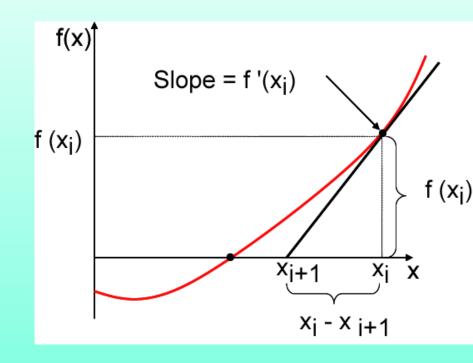
Geometrical Derivation:

Slope of tangent at x_i is

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

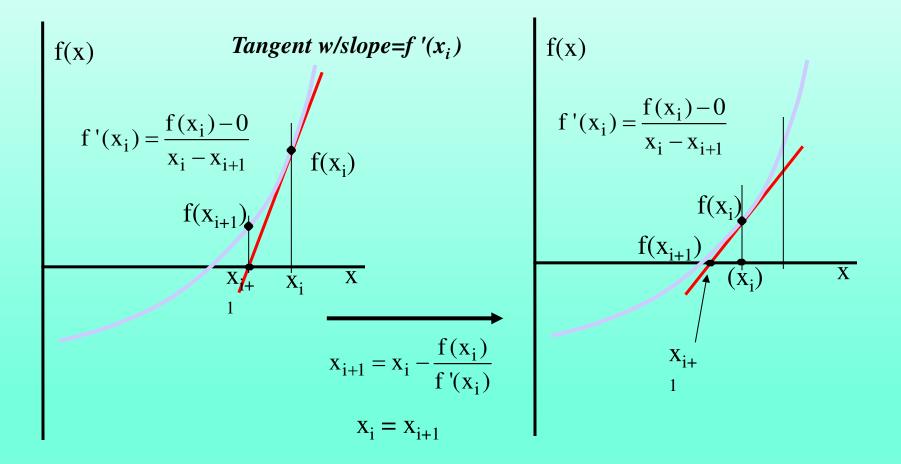
Solve for x_{i+1} :

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

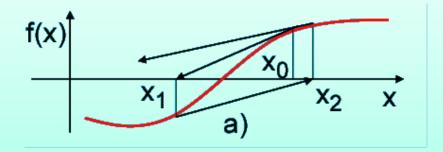


[Note that this is the same form as the generalized onepoint iteration, $x_{i+1} = g(x_i)$] **Open Methods (Newton-Raphson Method)**

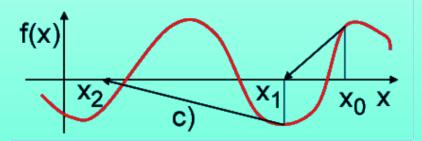
Newton-Raphson Method



Open Methods



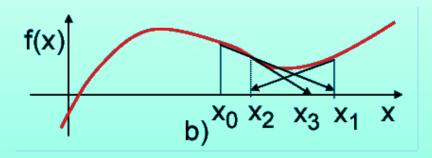
b) Oscilation in the neighboor of a maximum or minimum.



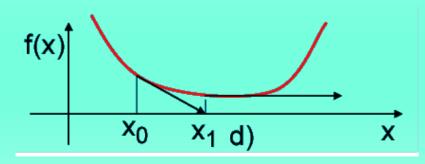
d) Existence of a null derivative.

Engineering Mathematics III

a) Inflection point in the neighboor of a root.



c) Jumps in functions with several roots.



Open Methods (Newton-Raphson Method)

Bond Example:

To apply Newton-Raphson method to:

$$f(i) = 7,500 - 1,000 \left[\frac{1 - (1 + i)^{-20}}{i} \right] = 0$$

We need the derivative of the function:

$$f'(i) = \frac{1,000}{i} \left\{ \left[\frac{1 - (1 + i)^{-20}}{i} \right] - 20(1 + i)^{-21} \right\}$$

Rate of convergence

compares the convergence of all the methods.

