Fundamentals of Electronics Devices

Unit-1 Lecture-8

Effective Mass

- The electrons in a crystal are not completely free, but instead interact with the periodic potential of the lattice.
- As a result, their "wave-particle" motion cannot be expected to be the same as for electrons in free space.

- Although electrons in solids are not free, most energy bands are close to parabolic at their minima (for conduction bands) or maxima (for valence bands).
- We can also approximate effective mass near those band extrema from the curvature of the band.

- There is nothing mysterious about the concept of an "effective" mass, mn, and the fact that it is different in different semiconductors.
- Indeed, the "true" mass of electron, m, is the same in Si, Ge or GaAs – it is the same as for a free electron in vacuum.

Equation

 To understand why the effective mass is different from the true mass, consider Newton's second law which states that the time rate of change of momentum is the force.

- An electron in a crystal experiences a total force F_{int} + F_{ext}, where F_{int} is the collection of internal periodic crystal forces, and F_{ext} is the externally applied force.
- It is inefficient to solve this complicated problem involving the periodic crystal potential (which is obviously different in different semiconductors) every time we try to solve a problem.

Drift of carriers in electric and magnetic fields

- Knowledge of carrier concentrations in a solid is necessary for calculating current flow in the presence of electric and magnetic fields.
- In addition to the values of *n* and *p*, we must be able to take into account the collisions of the charge carriers with the lattice and with the impurities.
- These process will affect the ease with which electrons and holes can flow through the crystal, that is, their *mobility* within the solid.