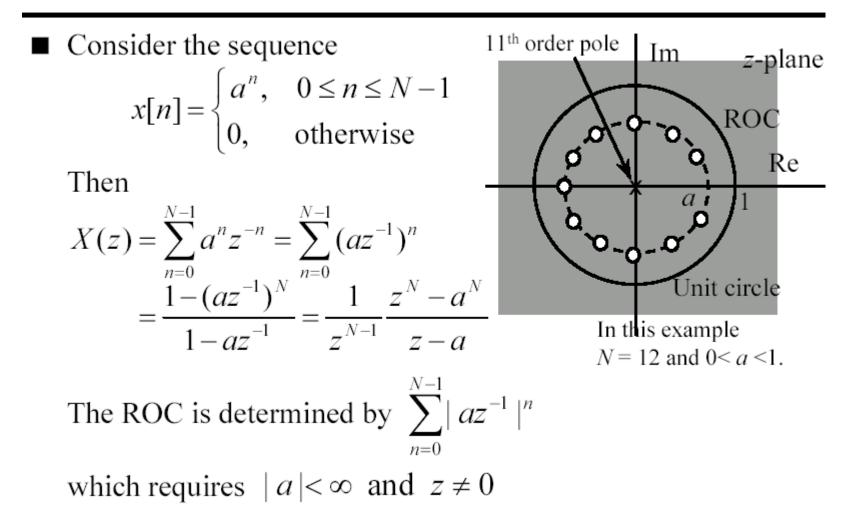
Properties and theorems

Example – Two-Sided Exponential Sequence

Consider the sequence $x[n] = (-\frac{1}{3})^n u[n] - (\frac{1}{2})^n u[-n-1]$ $\begin{vmatrix} z \\ -\frac{1}{3} \end{vmatrix} \blacklozenge \qquad \begin{vmatrix} z \\ -\frac{1}{2} \diamondsuit \\ 1 \end{matrix} \qquad 1$ Im z-plane $\overline{1 + \frac{1}{2}z^{-1}}$ $\overline{1 - \frac{1}{2}z^{-1}}$ ROC $\frac{1}{3} < |z| < \frac{1}{2}$ Re 1/3and $X(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}}$ 1/121/2 $=\frac{2z(z-\frac{1}{12})}{(z+\frac{1}{3})(z-\frac{1}{2})} \quad \frac{1}{3} < |z| < \frac{1}{2}$

Example – Finite-Length Sequence



Sequence	z-Transform	Region of Convergence all z	
$\delta(n)$	I fairfine		
$\alpha^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $	
$-\alpha^n u(-n-1)$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $	
$n\alpha^n u(n)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $	
$-n\alpha^n u(-n-1)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $	
$\cos(n\omega_0)u(n)$	$\frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1	
$sin(n\omega_0)u(n)$	$\frac{(\sin \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1	

Table 4-1 Common z-Transform Pairs

Properties of Z-Transform

• Linearity

If x(n) has a z-transform X(z) with a region of convergence Rx, and if y(n) has a z-transform Y(z) with a region of convergence Ry,

 $w(n) = ax(n) + by(n) \xleftarrow{z} W(z) = aX(z) + bY(z)$ and the ROC of W(z) will include the intersection of Rx and Ry, that is, Rw contains.

• Shifting property $R_x \cap R_y$

If x(n) has a z-transform X(z),

• Time reversal

$$x(n-n_0) \longleftrightarrow^Z z^{-n_0} X(z)$$

If x(n) has a z-transform X(z) with a region of convergence Rx that is the annulus , the z-transform of the time-reversed sequence x(-n) is $\alpha < |z| < \beta$

1/

and has a region of convergence $X(z \rightarrow X(z \rightarrow X)))))))))))))))))))))))$

$$\beta < |z| < 1/\alpha \qquad \qquad 1/R_x$$

Properties of Z-Transform

- Multiplication by an exponential
 - If a sequence x(n) is multiplied by a complex exponential α^n .

$$\alpha^n x(n) \longleftrightarrow^Z X(\alpha^{-1} z)$$

Convolution theorm

If x(n) has a z-transform X(z) with a region of convergence R_x , and if h(n) has a z-transform H(z) with a region of convergence R_h ,

$$y(n) = x(n) * h(n) \xleftarrow{Z} Y(z) = X(z)H(z)$$

The ROC of Y(z) will include the intersection of R_x and R_h , that is,

 R_y contains $R_x \cap R_h$.

With x(n), y(n), and h(n) denoting the input, output, and unit-sample response, respectively, and X(z), Y(x), and H(z) their z-transforms. The z-transform of the unit-sample response is often referred to as the system function.

Conjugation

If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is

$$x^*(n) \xleftarrow{Z} X^*(z^*)$$

Properties of Z-Transform

- Derivative
 - If X(z) is the z-transform of x(n), the z-transform of is

$$nx(n) \xleftarrow{z} -z \frac{dX(z)}{dz}$$

Initial value theorem

If X(z) is the z-transform of x(n) and x(n) is equal to zero for n<0, the initial value, x(0), maybe be found from X(z) as follows:

$$x(0) = \lim_{z \to \infty} X(z)$$

Property	Sequence	z-Transform	Region of Convergence
Linearity	ax(n) + by(n)	aX(z) + bY(z)	Contains $R_x \cap R_y$
Shift	$x(n-n_0)$	$z^{-n_0}X(z)$	R_x
Time reversal	x(-n)	$X(z^{-1})$	$1/R_x$
Exponentiation	$\alpha^n x(n)$	$X(\alpha^{-1}z)$	$ \alpha R_x$
Convolution	x(n) * y(n)	X(z)Y(z)	Contains $R_x \cap R_y$
Conjugation	x*(n)	$X^{*}(z^{*})$	R_x
Derivative	nx(n)	$-z \frac{dX(z)}{dz}$	R_x

Departies of the + Teorefo Table 4 1

Note: Given the z-transforms X(z) and Y(z) of x(n) and y(n), with regions of convergence R_x and R_y , respectively, this table lists the z-transforms of sequences that are formed from x(n) and y(n).