
Solution of difference 

equations using one-sided ZT 



Properties of z-Transform 
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Rational z-Transform 
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For most practical signals, the z-transform can be expressed 

as a ratio of two polynomials 



Rational z-Transform 
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It is customary to normalize the denominator polynomial 

to make its leading coefficients one, i.e., 

Also, it x[n] is a causal signal, then X(z) will be a proper 

rational polynomial with 
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where, for a fixed r, 

IDTFT 

DTFT 

(A contour integral) 

Inverse z-Transform 



Synthetic Division Method 

• Perform long division of the numerator polynomial by the denominator 
polynomial to produce the quotient polynomial  q(z 1) 
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•   Write X(z) as a normalized rational polynomial in z 1 by 

    multiplying the numerator and denominator by z N 
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•   Identify coefficients in the power series definition of X (z) where 



Ex.  Find the inverse z-transform of  
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Equating coefficients, 

},0,2,0,0,0,0,1,0,3,0,{][ 
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Remarks: This method doesn’t produce a closed-form 

                expression for x[n] 
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Z-Transform Solution of Linear 

Difference Equations 

• We can use z-transform to solve the difference 

equation that characterizes a causal, linear, time 

invariant system. The following expressions are 

especially useful to solve the difference 

equations: 

• z[y[(n-1)T] = z-1Y(z) +y[-T] 

• Z[y(n-2)T] = z-2Y(z) + z-1y[-T] + y[-2T] 

• Z[y(n-3)T] = z-3Y(z) + z-2y[-T] + z-1y[-2T] + 

  y[-3T] 
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Example: Consider the following difference equation: 

y[nT] –0.1y[(n-1)T] – 0.02y[(n-2)T] = 2x[nT] – x[(n-1)T] 

where the initial conditions are y[-T] = -10 and y[-2T] = 20. 

Y[nT] is the output and x[nT] is the unit step input. 

Solution: 

Computing the z-transform of the difference 

equation gives 

Y(z) – 0.1[z-1Y(z) + y[-T]] – 0.02[z-2Y(z) + z-1y[-T] + y[-

2T]] = 2X(z) – z-1X(z)  

Substituting the initial conditions we get 

Y(z) – 0.1z-1Y(z) +1 – 0.02z-2Y(z) – 0.2z-1 –0.4 =  

                                                                          (2 – z-1)X(z)  
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and the output signal y[nT] is 

]nT[u)1.0(830.0]nT[u)2.0(567.0]nT[u136.1]nT[y
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