Definition, conditions of existence of FT, properties, magnitude and phase spectra Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi u x} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Arbitrary function \longrightarrow Single Analytic ExpressionSpatial Domain (x) \longrightarrow Frequency Domain (u)

(Frequency Spectrum *F(u)*)

Inverse Fourier Transform (IFT)

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi u x} dx$$

Fourier Transform

• Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux}dx$$

Note: $e^{ik} = \cos k + i\sin k$ $i = \sqrt{-1}$

• Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{iux} dx$$

Conditions of existence of FT

 Sufficient condition for the existence of a Fourier transform

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

- That is, f(t) is absolutely integrable.
- However, the above condition is not the necessary one.

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

f

0

2f

frequency

3f

• Usually, frequency is more interesting than the phase

Frequency Spectra

