Some 1mportant FT theorems,
Parseval’s theorem



Properties of Fourier Transform
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Parseval Theorem

Parseval’s theorem:
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Fourier Transform
Theorem



Dirac Delta Function

=1 and | 8()dt=1

Also called unit impulse function.




Generalized Function

* The value of delta function can also be
defined in the sense of generalized function:

_[_o:o O()P()dt = p(0)|| d(t): Test Function

e We shall never talk about the value of 3(1).

e Instead, we talk about the values of integrals
involving ().



Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Properties of Unit Impulse Function
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Generalized Derivatives

The derivative f’(t) of an arbitrary generalized
function f(t) is defined by:

[ rodmde=-[" fo¢ @a

Show that this definition is consistent to the ordinary definition for the first
derivative of a continuous function.
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